/* * Block driver for the VMDK format * * Copyright (c) 2004 Fabrice Bellard * Copyright (c) 2005 Filip Navara * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu-common.h" #include "block_int.h" #include "module.h" #define VMDK3_MAGIC (('C' << 24) | ('O' << 16) | ('W' << 8) | 'D') #define VMDK4_MAGIC (('K' << 24) | ('D' << 16) | ('M' << 8) | 'V') typedef struct { uint32_t version; uint32_t flags; uint32_t disk_sectors; uint32_t granularity; uint32_t l1dir_offset; uint32_t l1dir_size; uint32_t file_sectors; uint32_t cylinders; uint32_t heads; uint32_t sectors_per_track; } VMDK3Header; typedef struct { uint32_t version; uint32_t flags; int64_t capacity; int64_t granularity; int64_t desc_offset; int64_t desc_size; int32_t num_gtes_per_gte; int64_t rgd_offset; int64_t gd_offset; int64_t grain_offset; char filler[1]; char check_bytes[4]; } __attribute__((packed)) VMDK4Header; #define L2_CACHE_SIZE 16 typedef struct BDRVVmdkState { BlockDriverState *hd; int64_t l1_table_offset; int64_t l1_backup_table_offset; uint32_t *l1_table; uint32_t *l1_backup_table; unsigned int l1_size; uint32_t l1_entry_sectors; unsigned int l2_size; uint32_t *l2_cache; uint32_t l2_cache_offsets[L2_CACHE_SIZE]; uint32_t l2_cache_counts[L2_CACHE_SIZE]; unsigned int cluster_sectors; uint32_t parent_cid; int is_parent; } BDRVVmdkState; typedef struct VmdkMetaData { uint32_t offset; unsigned int l1_index; unsigned int l2_index; unsigned int l2_offset; int valid; } VmdkMetaData; static int vmdk_probe(const uint8_t *buf, int buf_size, const char *filename) { uint32_t magic; if (buf_size < 4) return 0; magic = be32_to_cpu(*(uint32_t *)buf); if (magic == VMDK3_MAGIC || magic == VMDK4_MAGIC) return 100; else return 0; } #define CHECK_CID 1 #define SECTOR_SIZE 512 #define DESC_SIZE 20*SECTOR_SIZE // 20 sectors of 512 bytes each #define HEADER_SIZE 512 // first sector of 512 bytes static uint32_t vmdk_read_cid(BlockDriverState *bs, int parent) { BDRVVmdkState *s = bs->opaque; char desc[DESC_SIZE]; uint32_t cid; const char *p_name, *cid_str; size_t cid_str_size; /* the descriptor offset = 0x200 */ if (bdrv_pread(s->hd, 0x200, desc, DESC_SIZE) != DESC_SIZE) return 0; if (parent) { cid_str = "parentCID"; cid_str_size = sizeof("parentCID"); } else { cid_str = "CID"; cid_str_size = sizeof("CID"); } if ((p_name = strstr(desc,cid_str)) != NULL) { p_name += cid_str_size; sscanf(p_name,"%x",&cid); } return cid; } static int vmdk_write_cid(BlockDriverState *bs, uint32_t cid) { BDRVVmdkState *s = bs->opaque; char desc[DESC_SIZE], tmp_desc[DESC_SIZE]; char *p_name, *tmp_str; /* the descriptor offset = 0x200 */ if (bdrv_pread(s->hd, 0x200, desc, DESC_SIZE) != DESC_SIZE) return -1; tmp_str = strstr(desc,"parentCID"); pstrcpy(tmp_desc, sizeof(tmp_desc), tmp_str); if ((p_name = strstr(desc,"CID")) != NULL) { p_name += sizeof("CID"); snprintf(p_name, sizeof(desc) - (p_name - desc), "%x\n", cid); pstrcat(desc, sizeof(desc), tmp_desc); } if (bdrv_pwrite_sync(s->hd, 0x200, desc, DESC_SIZE) < 0) return -1; return 0; } static int vmdk_is_cid_valid(BlockDriverState *bs) { #ifdef CHECK_CID BDRVVmdkState *s = bs->opaque; BlockDriverState *p_bs = bs->backing_hd; uint32_t cur_pcid; if (p_bs) { cur_pcid = vmdk_read_cid(p_bs,0); if (s->parent_cid != cur_pcid) // CID not valid return 0; } #endif // CID valid return 1; } static int vmdk_snapshot_create(const char *filename, const char *backing_file) { int snp_fd, p_fd; uint32_t p_cid; char *p_name, *gd_buf, *rgd_buf; const char *real_filename, *temp_str; VMDK4Header header; uint32_t gde_entries, gd_size; int64_t gd_offset, rgd_offset, capacity, gt_size; char p_desc[DESC_SIZE], s_desc[DESC_SIZE], hdr[HEADER_SIZE]; static const char desc_template[] = "# Disk DescriptorFile\n" "version=1\n" "CID=%x\n" "parentCID=%x\n" "createType=\"monolithicSparse\"\n" "parentFileNameHint=\"%s\"\n" "\n" "# Extent description\n" "RW %u SPARSE \"%s\"\n" "\n" "# The Disk Data Base \n" "#DDB\n" "\n"; snp_fd = open(filename, O_RDWR | O_CREAT | O_TRUNC | O_BINARY | O_LARGEFILE, 0644); if (snp_fd < 0) return -1; p_fd = open(backing_file, O_RDONLY | O_BINARY | O_LARGEFILE); if (p_fd < 0) { close(snp_fd); return -1; } /* read the header */ if (lseek(p_fd, 0x0, SEEK_SET) == -1) goto fail; if (read(p_fd, hdr, HEADER_SIZE) != HEADER_SIZE) goto fail; /* write the header */ if (lseek(snp_fd, 0x0, SEEK_SET) == -1) goto fail; if (write(snp_fd, hdr, HEADER_SIZE) == -1) goto fail; memset(&header, 0, sizeof(header)); memcpy(&header,&hdr[4], sizeof(header)); // skip the VMDK4_MAGIC ftruncate(snp_fd, header.grain_offset << 9); /* the descriptor offset = 0x200 */ if (lseek(p_fd, 0x200, SEEK_SET) == -1) goto fail; if (read(p_fd, p_desc, DESC_SIZE) != DESC_SIZE) goto fail; if ((p_name = strstr(p_desc,"CID")) != NULL) { p_name += sizeof("CID"); sscanf(p_name,"%x",&p_cid); } real_filename = filename; if ((temp_str = strrchr(real_filename, '\\')) != NULL) real_filename = temp_str + 1; if ((temp_str = strrchr(real_filename, '/')) != NULL) real_filename = temp_str + 1; if ((temp_str = strrchr(real_filename, ':')) != NULL) real_filename = temp_str + 1; snprintf(s_desc, sizeof(s_desc), desc_template, p_cid, p_cid, backing_file, (uint32_t)header.capacity, real_filename); /* write the descriptor */ if (lseek(snp_fd, 0x200, SEEK_SET) == -1) goto fail; if (write(snp_fd, s_desc, strlen(s_desc)) == -1) goto fail; gd_offset = header.gd_offset * SECTOR_SIZE; // offset of GD table rgd_offset = header.rgd_offset * SECTOR_SIZE; // offset of RGD table capacity = header.capacity * SECTOR_SIZE; // Extent size /* * Each GDE span 32M disk, means: * 512 GTE per GT, each GTE points to grain */ gt_size = (int64_t)header.num_gtes_per_gte * header.granularity * SECTOR_SIZE; if (!gt_size) goto fail; gde_entries = (uint32_t)(capacity / gt_size); // number of gde/rgde gd_size = gde_entries * sizeof(uint32_t); /* write RGD */ rgd_buf = qemu_malloc(gd_size); if (lseek(p_fd, rgd_offset, SEEK_SET) == -1) goto fail_rgd; if (read(p_fd, rgd_buf, gd_size) != gd_size) goto fail_rgd; if (lseek(snp_fd, rgd_offset, SEEK_SET) == -1) goto fail_rgd; if (write(snp_fd, rgd_buf, gd_size) == -1) goto fail_rgd; /* write GD */ gd_buf = qemu_malloc(gd_size); if (lseek(p_fd, gd_offset, SEEK_SET) == -1) goto fail_gd; if (read(p_fd, gd_buf, gd_size) != gd_size) goto fail_gd; if (lseek(snp_fd, gd_offset, SEEK_SET) == -1) goto fail_gd; if (write(snp_fd, gd_buf, gd_size) == -1) goto fail_gd; qemu_free(gd_buf); qemu_free(rgd_buf); close(p_fd); close(snp_fd); return 0; fail_gd: qemu_free(gd_buf); fail_rgd: qemu_free(rgd_buf); fail: close(p_fd); close(snp_fd); return -1; } static void vmdk_parent_close(BlockDriverState *bs) { if (bs->backing_hd) bdrv_close(bs->backing_hd); } static int parent_open = 0; static int vmdk_parent_open(BlockDriverState *bs, const char * filename) { BDRVVmdkState *s = bs->opaque; char *p_name; char desc[DESC_SIZE]; char parent_img_name[1024]; /* the descriptor offset = 0x200 */ if (bdrv_pread(s->hd, 0x200, desc, DESC_SIZE) != DESC_SIZE) return -1; if ((p_name = strstr(desc,"parentFileNameHint")) != NULL) { char *end_name; struct stat file_buf; p_name += sizeof("parentFileNameHint") + 1; if ((end_name = strchr(p_name,'\"')) == NULL) return -1; if ((end_name - p_name) > sizeof (bs->backing_file) - 1) return -1; pstrcpy(bs->backing_file, end_name - p_name + 1, p_name); if (stat(bs->backing_file, &file_buf) != 0) { path_combine(parent_img_name, sizeof(parent_img_name), filename, bs->backing_file); } else { pstrcpy(parent_img_name, sizeof(parent_img_name), bs->backing_file); } bs->backing_hd = bdrv_new(""); if (!bs->backing_hd) { failure: bdrv_close(s->hd); return -1; } parent_open = 1; if (bdrv_open(bs->backing_hd, parent_img_name, BDRV_O_RDONLY) < 0) goto failure; parent_open = 0; } return 0; } static int vmdk_open(BlockDriverState *bs, const char *filename, int flags) { BDRVVmdkState *s = bs->opaque; uint32_t magic; int l1_size, i, ret; if (parent_open) // Parent must be opened as RO. flags = BDRV_O_RDONLY; ret = bdrv_file_open(&s->hd, filename, flags); if (ret < 0) return ret; if (bdrv_pread(s->hd, 0, &magic, sizeof(magic)) != sizeof(magic)) goto fail; magic = be32_to_cpu(magic); if (magic == VMDK3_MAGIC) { VMDK3Header header; if (bdrv_pread(s->hd, sizeof(magic), &header, sizeof(header)) != sizeof(header)) goto fail; s->cluster_sectors = le32_to_cpu(header.granularity); s->l2_size = 1 << 9; s->l1_size = 1 << 6; bs->total_sectors = le32_to_cpu(header.disk_sectors); s->l1_table_offset = le32_to_cpu(header.l1dir_offset) << 9; s->l1_backup_table_offset = 0; s->l1_entry_sectors = s->l2_size * s->cluster_sectors; } else if (magic == VMDK4_MAGIC) { VMDK4Header header; if (bdrv_pread(s->hd, sizeof(magic), &header, sizeof(header)) != sizeof(header)) goto fail; bs->total_sectors = le64_to_cpu(header.capacity); s->cluster_sectors = le64_to_cpu(header.granularity); s->l2_size = le32_to_cpu(header.num_gtes_per_gte); s->l1_entry_sectors = s->l2_size * s->cluster_sectors; if (s->l1_entry_sectors <= 0) goto fail; s->l1_size = (bs->total_sectors + s->l1_entry_sectors - 1) / s->l1_entry_sectors; s->l1_table_offset = le64_to_cpu(header.rgd_offset) << 9; s->l1_backup_table_offset = le64_to_cpu(header.gd_offset) << 9; if (parent_open) s->is_parent = 1; else s->is_parent = 0; // try to open parent images, if exist if (vmdk_parent_open(bs, filename) != 0) goto fail; // write the CID once after the image creation s->parent_cid = vmdk_read_cid(bs,1); } else { goto fail; } /* read the L1 table */ l1_size = s->l1_size * sizeof(uint32_t); s->l1_table = qemu_malloc(l1_size); if (bdrv_pread(s->hd, s->l1_table_offset, s->l1_table, l1_size) != l1_size) goto fail; for(i = 0; i < s->l1_size; i++) { le32_to_cpus(&s->l1_table[i]); } if (s->l1_backup_table_offset) { s->l1_backup_table = qemu_malloc(l1_size); if (bdrv_pread(s->hd, s->l1_backup_table_offset, s->l1_backup_table, l1_size) != l1_size) goto fail; for(i = 0; i < s->l1_size; i++) { le32_to_cpus(&s->l1_backup_table[i]); } } s->l2_cache = qemu_malloc(s->l2_size * L2_CACHE_SIZE * sizeof(uint32_t)); return 0; fail: qemu_free(s->l1_backup_table); qemu_free(s->l1_table); qemu_free(s->l2_cache); bdrv_delete(s->hd); return -1; } static uint64_t get_cluster_offset(BlockDriverState *bs, VmdkMetaData *m_data, uint64_t offset, int allocate); static int get_whole_cluster(BlockDriverState *bs, uint64_t cluster_offset, uint64_t offset, int allocate) { BDRVVmdkState *s = bs->opaque; uint8_t whole_grain[s->cluster_sectors*512]; // 128 sectors * 512 bytes each = grain size 64KB // we will be here if it's first write on non-exist grain(cluster). // try to read from parent image, if exist if (bs->backing_hd) { int ret; if (!vmdk_is_cid_valid(bs)) return -1; ret = bdrv_read(bs->backing_hd, offset >> 9, whole_grain, s->cluster_sectors); if (ret < 0) { return -1; } //Write grain only into the active image ret = bdrv_write(s->hd, cluster_offset, whole_grain, s->cluster_sectors); if (ret < 0) { return -1; } } return 0; } static int vmdk_L2update(BlockDriverState *bs, VmdkMetaData *m_data) { BDRVVmdkState *s = bs->opaque; /* update L2 table */ if (bdrv_pwrite_sync(s->hd, ((int64_t)m_data->l2_offset * 512) + (m_data->l2_index * sizeof(m_data->offset)), &(m_data->offset), sizeof(m_data->offset)) < 0) return -1; /* update backup L2 table */ if (s->l1_backup_table_offset != 0) { m_data->l2_offset = s->l1_backup_table[m_data->l1_index]; if (bdrv_pwrite_sync(s->hd, ((int64_t)m_data->l2_offset * 512) + (m_data->l2_index * sizeof(m_data->offset)), &(m_data->offset), sizeof(m_data->offset)) < 0) return -1; } return 0; } static uint64_t get_cluster_offset(BlockDriverState *bs, VmdkMetaData *m_data, uint64_t offset, int allocate) { BDRVVmdkState *s = bs->opaque; unsigned int l1_index, l2_offset, l2_index; int min_index, i, j; uint32_t min_count, *l2_table, tmp = 0; uint64_t cluster_offset; if (m_data) m_data->valid = 0; l1_index = (offset >> 9) / s->l1_entry_sectors; if (l1_index >= s->l1_size) return 0; l2_offset = s->l1_table[l1_index]; if (!l2_offset) return 0; for(i = 0; i < L2_CACHE_SIZE; i++) { if (l2_offset == s->l2_cache_offsets[i]) { /* increment the hit count */ if (++s->l2_cache_counts[i] == 0xffffffff) { for(j = 0; j < L2_CACHE_SIZE; j++) { s->l2_cache_counts[j] >>= 1; } } l2_table = s->l2_cache + (i * s->l2_size); goto found; } } /* not found: load a new entry in the least used one */ min_index = 0; min_count = 0xffffffff; for(i = 0; i < L2_CACHE_SIZE; i++) { if (s->l2_cache_counts[i] < min_count) { min_count = s->l2_cache_counts[i]; min_index = i; } } l2_table = s->l2_cache + (min_index * s->l2_size); if (bdrv_pread(s->hd, (int64_t)l2_offset * 512, l2_table, s->l2_size * sizeof(uint32_t)) != s->l2_size * sizeof(uint32_t)) return 0; s->l2_cache_offsets[min_index] = l2_offset; s->l2_cache_counts[min_index] = 1; found: l2_index = ((offset >> 9) / s->cluster_sectors) % s->l2_size; cluster_offset = le32_to_cpu(l2_table[l2_index]); if (!cluster_offset) { if (!allocate) return 0; // Avoid the L2 tables update for the images that have snapshots. if (!s->is_parent) { cluster_offset = bdrv_getlength(s->hd); bdrv_truncate(s->hd, cluster_offset + (s->cluster_sectors << 9)); cluster_offset >>= 9; tmp = cpu_to_le32(cluster_offset); l2_table[l2_index] = tmp; } /* First of all we write grain itself, to avoid race condition * that may to corrupt the image. * This problem may occur because of insufficient space on host disk * or inappropriate VM shutdown. */ if (get_whole_cluster(bs, cluster_offset, offset, allocate) == -1) return 0; if (m_data) { m_data->offset = tmp; m_data->l1_index = l1_index; m_data->l2_index = l2_index; m_data->l2_offset = l2_offset; m_data->valid = 1; } } cluster_offset <<= 9; return cluster_offset; } static int vmdk_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors, int *pnum) { BDRVVmdkState *s = bs->opaque; int index_in_cluster, n; uint64_t cluster_offset; cluster_offset = get_cluster_offset(bs, NULL, sector_num << 9, 0); index_in_cluster = sector_num % s->cluster_sectors; n = s->cluster_sectors - index_in_cluster; if (n > nb_sectors) n = nb_sectors; *pnum = n; return (cluster_offset != 0); } static int vmdk_read(BlockDriverState *bs, int64_t sector_num, uint8_t *buf, int nb_sectors) { BDRVVmdkState *s = bs->opaque; int index_in_cluster, n, ret; uint64_t cluster_offset; while (nb_sectors > 0) { cluster_offset = get_cluster_offset(bs, NULL, sector_num << 9, 0); index_in_cluster = sector_num % s->cluster_sectors; n = s->cluster_sectors - index_in_cluster; if (n > nb_sectors) n = nb_sectors; if (!cluster_offset) { // try to read from parent image, if exist if (bs->backing_hd) { if (!vmdk_is_cid_valid(bs)) return -1; ret = bdrv_read(bs->backing_hd, sector_num, buf, n); if (ret < 0) return -1; } else { memset(buf, 0, 512 * n); } } else { if(bdrv_pread(s->hd, cluster_offset + index_in_cluster * 512, buf, n * 512) != n * 512) return -1; } nb_sectors -= n; sector_num += n; buf += n * 512; } return 0; } static int vmdk_write(BlockDriverState *bs, int64_t sector_num, const uint8_t *buf, int nb_sectors) { BDRVVmdkState *s = bs->opaque; VmdkMetaData m_data; int index_in_cluster, n; uint64_t cluster_offset; static int cid_update = 0; if (sector_num > bs->total_sectors) { fprintf(stderr, "(VMDK) Wrong offset: sector_num=0x%" PRIx64 " total_sectors=0x%" PRIx64 "\n", sector_num, bs->total_sectors); return -1; } while (nb_sectors > 0) { index_in_cluster = sector_num & (s->cluster_sectors - 1); n = s->cluster_sectors - index_in_cluster; if (n > nb_sectors) n = nb_sectors; cluster_offset = get_cluster_offset(bs, &m_data, sector_num << 9, 1); if (!cluster_offset) return -1; if (bdrv_pwrite(s->hd, cluster_offset + index_in_cluster * 512, buf, n * 512) != n * 512) return -1; if (m_data.valid) { /* update L2 tables */ if (vmdk_L2update(bs, &m_data) == -1) return -1; } nb_sectors -= n; sector_num += n; buf += n * 512; // update CID on the first write every time the virtual disk is opened if (!cid_update) { vmdk_write_cid(bs, time(NULL)); cid_update++; } } return 0; } static int vmdk_create(const char *filename, QEMUOptionParameter *options) { int fd, i; VMDK4Header header; uint32_t tmp, magic, grains, gd_size, gt_size, gt_count; static const char desc_template[] = "# Disk DescriptorFile\n" "version=1\n" "CID=%x\n" "parentCID=ffffffff\n" "createType=\"monolithicSparse\"\n" "\n" "# Extent description\n" "RW %" PRId64 " SPARSE \"%s\"\n" "\n" "# The Disk Data Base \n" "#DDB\n" "\n" "ddb.virtualHWVersion = \"%d\"\n" "ddb.geometry.cylinders = \"%" PRId64 "\"\n" "ddb.geometry.heads = \"16\"\n" "ddb.geometry.sectors = \"63\"\n" "ddb.adapterType = \"ide\"\n"; char desc[1024]; const char *real_filename, *temp_str; int64_t total_size = 0; const char *backing_file = NULL; int flags = 0; // Read out options while (options && options->name) { if (!strcmp(options->name, BLOCK_OPT_SIZE)) { total_size = options->value.n / 512; } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) { backing_file = options->value.s; } else if (!strcmp(options->name, BLOCK_OPT_COMPAT6)) { flags |= options->value.n ? BLOCK_FLAG_COMPAT6: 0; } options++; } /* XXX: add support for backing file */ if (backing_file) { return vmdk_snapshot_create(filename, backing_file); } fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY | O_LARGEFILE, 0644); if (fd < 0) return -1; magic = cpu_to_be32(VMDK4_MAGIC); memset(&header, 0, sizeof(header)); header.version = cpu_to_le32(1); header.flags = cpu_to_le32(3); /* ?? */ header.capacity = cpu_to_le64(total_size); header.granularity = cpu_to_le64(128); header.num_gtes_per_gte = cpu_to_le32(512); grains = (total_size + header.granularity - 1) / header.granularity; gt_size = ((header.num_gtes_per_gte * sizeof(uint32_t)) + 511) >> 9; gt_count = (grains + header.num_gtes_per_gte - 1) / header.num_gtes_per_gte; gd_size = (gt_count * sizeof(uint32_t) + 511) >> 9; header.desc_offset = 1; header.desc_size = 20; header.rgd_offset = header.desc_offset + header.desc_size; header.gd_offset = header.rgd_offset + gd_size + (gt_size * gt_count); header.grain_offset = ((header.gd_offset + gd_size + (gt_size * gt_count) + header.granularity - 1) / header.granularity) * header.granularity; header.desc_offset = cpu_to_le64(header.desc_offset); header.desc_size = cpu_to_le64(header.desc_size); header.rgd_offset = cpu_to_le64(header.rgd_offset); header.gd_offset = cpu_to_le64(header.gd_offset); header.grain_offset = cpu_to_le64(header.grain_offset); header.check_bytes[0] = 0xa; header.check_bytes[1] = 0x20; header.check_bytes[2] = 0xd; header.check_bytes[3] = 0xa; /* write all the data */ write(fd, &magic, sizeof(magic)); write(fd, &header, sizeof(header)); ftruncate(fd, header.grain_offset << 9); /* write grain directory */ lseek(fd, le64_to_cpu(header.rgd_offset) << 9, SEEK_SET); for (i = 0, tmp = header.rgd_offset + gd_size; i < gt_count; i++, tmp += gt_size) write(fd, &tmp, sizeof(tmp)); /* write backup grain directory */ lseek(fd, le64_to_cpu(header.gd_offset) << 9, SEEK_SET); for (i = 0, tmp = header.gd_offset + gd_size; i < gt_count; i++, tmp += gt_size) write(fd, &tmp, sizeof(tmp)); /* compose the descriptor */ real_filename = filename; if ((temp_str = strrchr(real_filename, '\\')) != NULL) real_filename = temp_str + 1; if ((temp_str = strrchr(real_filename, '/')) != NULL) real_filename = temp_str + 1; if ((temp_str = strrchr(real_filename, ':')) != NULL) real_filename = temp_str + 1; snprintf(desc, sizeof(desc), desc_template, (unsigned int)time(NULL), total_size, real_filename, (flags & BLOCK_FLAG_COMPAT6 ? 6 : 4), total_size / (int64_t)(63 * 16)); /* write the descriptor */ lseek(fd, le64_to_cpu(header.desc_offset) << 9, SEEK_SET); write(fd, desc, strlen(desc)); close(fd); return 0; } static void vmdk_close(BlockDriverState *bs) { BDRVVmdkState *s = bs->opaque; qemu_free(s->l1_table); qemu_free(s->l2_cache); // try to close parent image, if exist vmdk_parent_close(s->hd); bdrv_delete(s->hd); } static void vmdk_flush(BlockDriverState *bs) { BDRVVmdkState *s = bs->opaque; bdrv_flush(s->hd); } static QEMUOptionParameter vmdk_create_options[] = { { .name = BLOCK_OPT_SIZE, .type = OPT_SIZE, .help = "Virtual disk size" }, { .name = BLOCK_OPT_BACKING_FILE, .type = OPT_STRING, .help = "File name of a base image" }, { .name = BLOCK_OPT_COMPAT6, .type = OPT_FLAG, .help = "VMDK version 6 image" }, { NULL } }; static BlockDriver bdrv_vmdk = { .format_name = "vmdk", .instance_size = sizeof(BDRVVmdkState), .bdrv_probe = vmdk_probe, .bdrv_open = vmdk_open, .bdrv_read = vmdk_read, .bdrv_write = vmdk_write, .bdrv_close = vmdk_close, .bdrv_create = vmdk_create, .bdrv_flush = vmdk_flush, .bdrv_is_allocated = vmdk_is_allocated, .create_options = vmdk_create_options, }; static void bdrv_vmdk_init(void) { bdrv_register(&bdrv_vmdk); } block_init(bdrv_vmdk_init);