Package Manager Specification

Stephen P. Bennett Christian Faulhammer
spb@exherbo.org fauli@gentoo.org
Ciaran McCreesh Ulrich Miiller
ciaran.mccreesh @ googlemail.com ulm @ gentoo.org

20th September 2012

mailto:spb@exherbo.org
mailto:fauli@gentoo.org
mailto:ciaran.mccreesh@googlemail.com
mailto:ulm@gentoo.org

Contents

1 Introduction
I.1 Aimsand Motivation
1.2 Rationale L
1.3 Conventions e e e e e e e e e e
2 EAPIs
2.1 Definition e
2.2 Defined EAPIs
23 Reserved EAPIs e
3 Names and Versions
3.1 Restrictionsupon Names L
3.1.1 Category Names e
3.1.2 Package Names
3.1.3 SlotNames e
3.1.4 USEFlagNames ittt e e
3.1.5 Repository Names
3.1.6 Keyword Names
3.1.7 EAPINames
3.2 Version Specifications e e
3.3 Version Comparison v v v vt e e e e e e e e e e e e
34 Uniquenessof versions e
4 Tree Layout
4.1 TopLevel e
4.2 Category Directories e e e
4.3 Package Directories
4.4 TheProfilesDirectory
44.1 Theprofilesdescfile
4.4.2 The thirdpartymirrorsfile L oL
443 usedescandrelatedfiles Lo
444 Theupdatesdirectory
4.5 TheLicenses Directory
4.6 TheEclass Directory
47 The Metadata Directory e e
4.7.1 Themetadatacache
5 Profiles
5.1 Generalprinciples e e
5.2 Filesthatmakeupaprofile
5.2.1 Theparentfile
52.2 Theeapifile.
523 deprecated
524 makedefaults
5.2.5 Simpleline-basedfiles o
5.2.6 packages

10
10
10
11

12
12
12
12
12
12
13
13
13
13
13
13

16
16
16
17
17
18
18
18
19
19
19
19
19

CONTENTS

5.2.7 packages.build

5.2.8 packagemask
529 package.provided L
5.2.10 package.use
5.2.11 USE masking and forcing,
5.3 Profilevariables
5.3.1 Incremental Variables. 0oL
5.3.2 Specific variables and their meanings

6 Ebuild File Format

7 Ebuild-defined Variables
7.1 Metadata invariance . .

7.2 Mandatory Ebuild-defined Variables
7.3 Optional Ebuild-defined Variables

73.1 EAPI
7.3.2 Keywords . . .
7.3.3 RDEPEND value

7.4 Magic Ebuild-defined Variables

8 Dependencies
8.1 Dependency Classes .

8.2 Dependency Specification Format
8.2.1 All-of Dependency Specifications
8.2.2 Use-conditional Dependency Specifications
8.2.3 Any-of Dependency Specifications
8.2.4 Exactly-one-of Dependency Specifications
8.2.5 At-most-one-of Dependency Specifications
8.2.6 Package Dependency Specifications
8.2.7 UseState Constraintst

8.2.8 Restrict
8.2.9 Properties . . .
8.2.10 SRC_URI . . .

9 Ebuild-defined Functions
9.1 List of Functions . . .

9.1.1 Initial Working Directories

9.1.2 pkg_pretend . .
9.1.3 pkg setup . . .
9.1.4 src_unpack . .
9.1.5 src_prepare . .
9.1.6 src_configure .
9.1.7 src_compile . .
9.1.8 src_test
9.1.9 src_install . . .
9.1.10 pkg_preinst . .
9.1.11 pkg_postinst .
9.1.12 pkg prerm . .
9.1.13 pkg postrm . .
9.1.14 pkg config . .
9.1.15 pkg_info . ..
9.1.16 pkg_nofetch. .

9.1.17 default_PhaseFunctions.

92 CallOrder

10 Eclasses
10.1 The inherit command .
10.2 Eclass-defined Metadata
10.3 EXPORT_FUNCTIONS

Keys o

21
21
22
22
22
24
24
24

26

27
27
27
27
29
29
29
30

31
31
31
32
33
33
33
33
33
36
36
36
37

38
38
38
38
39
39
40
40
40
41
41
42
42
43
43
43
43
43
44
44

CONTENTS

11 The Ebuild Environment
11.1 Defined Variables e
11.1.1 USEand IUSEHandling
11.1.2 REPLACING_VERSIONS and REPLACED_BY _VERSION
11.1.3 Offset-prefix variables EPREFIX, EROOTandED
11.2 The state of variables between functions
11.3 Available commands
11.3.1 Systemcommands
11.3.2 Commands provided by package dependencies
11.3.3 Ebuild-specific Commands
11.4 The state of the system between functions

12 Merging and Unmerging
12.1 OVEIVIEW . . . o v vt o e e e e e e e
122 DIreCtOries . .+« v v v v v e o e e e e e e e e e e e e e e e e e
12.2.1 Permissions oo e e e
12.2.2 Empty Directorieso
123 Regular Files
12.3.1 Permissions e e
12.3.2 File modificationtimes
12.3.3 Configuration File Protection
12.4 Symlinks

13

14

12.4.1 Rewriting e
125 Hardlinks
12.6 OtherFiles

Metadata Cache

13.1 Directory Contents
13.2 Cache FileFormat.

Glossary
metadata.xml
Unspecified Items

Historical Curiosities

C.1 If-elseuseblocks
C2 cvsVersions e
C3 wusedefaults
C4 Old-style Virtuals

Feature Availability by EAPI
Differences Between EAPIs

Desk Reference

73
73

74
74
74

75

76

77

78
78
78
78
79

80

84

87

List of Algorithms

— O 00 1O\ LN AW

Version comparison top-level logic oL 0oL 13
Version comparison logic for numeric components 14
Version comparison logic for each numeric component after the first 14
Version comparison logic for letter components, 14
Version comparison logic for suffixes 15
Version comparison logic foreachsuffix 15
Version comparison logic for revision components L. L. 15
USE masking logic 23
econf --libdir logic 61
Determining the library directory 63

Listings

10.1 EXPORT_FUNCTIONS example: foo.eclass 47
11.1 Environment state between functions 57
11.2 einstallcommand e 61
C.1 If-elseuseblocks e 78

List of Tables

5.1
5.2

7.1
7.2
7.3
7.4

8.1
8.2
8.3
8.4
8.5
8.6

9.1
9.2
9.3
94
9.5
9.6
9.7
9.8
9.9

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12
11.13
11.14
11.15
11.16
11.17
11.18
11.19
11.20
11.21

Profile directory support for masking/forcing use flags in stable versions only
Profile-defined IUSE injection for EAPIs

EAPIs supporting TUSE defaults
EAPIs supporting various ebuild-defined variables
EAPIs with RDEPEND=DEPEND Default
EAPIs supporting DEFINED_PHASES

Dependency classes required to be satisfied for a particular phase function
EAPIs supporting SRC_URL arrOWsS« . v v v v v v v e e e e e e e e e e
EAPIs supporting REQUIRED_USE 77 groups« v oo v v v v oo
Support for SLOT dependencies and sub-slotsin EAPIs
EAPIs supporting USE dependencies
Exclamation mark strengths for EAPIs

EAPIs with S to WORKDIR fallbacks
EAPIs supporting pkg_pretend
EAPIs supporting STC_prepare covii it e e
EAPIs supporting src_configure Lo
src_compile behaviour for EAPIs oL
src_test behaviour for EAPIs oo
src_install behaviourfor EAPIs oL
EAPIs supporting pkg_info on non-installed packages
EAPIs supporting default_ phase functions

Defined variables
EAPIs supporting various added env variables
EAPIs supporting various removed env variables
EAPIs supporting offset-prefix env variables
EAPIs supporting offset-prefix
find implementation for EAPIs
EAPI Command Failure Behaviour
Bannedcommands L
Extra econf arguments for EAPIs 0.
EAPIs supporting dodoc -r L.
EAPIs supporting doheader and newheader
EAPIs supporting symlinks fordoins,
doman language support options for EAPIs
EAPIs supporting stdin for new* commands
EAPIs supporting --host-root for *_versioncommands
EAPIs supporting controllable compression
EAPI Behaviour for Use Queries not in IUSE_EFFECTIVE
EAPIs supporting empty third argument in use_with and use_enable
EAPIS supporting usex o v v it e e e e e e e
unpack extensions for EAPIs oo oo
EAPIs supporting the default function

LIST OF TABLES

12.1 Preservation of file modification times (mtimes)

D.1 FeaturesinEAPIs

LIST OF TABLES 8
Acknowledgements

Thanks to Mike Kelly (package manager provided utilities, section 11.3.3), Danny van Dyk (ebuild
functions, section 9), David Leverton (various sections), Petteri Rity (environment state, sec-
tion 11.2) and Michat Gérny (various sections) for contributions. Thanks also to Mike Frysinger
and Brian Harring for proof-reading and suggestions for fixes and/or clarification.

Copyright and Licence

The bulk of this document is (©) 2007, 2008, 2009 Stephen Bennett and Ciaran McCreesh. Con-
tributions are owned by their respective authors, and may have been changed substantially before
inclusion.

This document is released under the Creative Commons Attribution-Share Alike 3.0 Licence. The
full text of this licence can be found at http://creativecommons.org/licenses/by-sa/3.0/.

Reporting Issues

Issues (inaccuracies, wording problems, omissions etc.) in this document should be reported via Gen-
too Bugzilla using product Gentoo Hosted Projects, component PMS/EAPI and the default assignee.
There should be one bug per issue, and one issue per bug.

Patches (in git format-patch form if possible) may be submitted either via Bugzilla or to the
gentoo-pms@gentoo.org mailing list. Patches will be reviewed by the PMS team, who will do
one of the following:

e Accept and apply the patch.

e Explain why the patch cannot be applied as-is. The patch may then be updated and resubmitted
if appropriate.

e Reject the patch outright.

o Take special action merited by the individual circumstances.

When reporting issues, remember that this document is not the appropriate place for pushing through
changes to the tree or the package manager, except where those changes are bugs.

If any issue cannot be resolved by the PMS team, it may be escalated to the Gentoo Council.

http://creativecommons.org/licenses/by-sa/3.0/

Chapter 1

Introduction

1.1 Aims and Motivation

This document aims to fully describe the format of an ebuild repository and the ebuilds therein, as
well as certain aspects of package manager behaviour required to support such a repository.

This document is not designed to be an introduction to ebuild development. Prior knowledge of
ebuild creation and an understanding of how the package management system works is assumed;
certain less familiar terms are explained in the Glossary in chapter 14.

This document does not specify any user or package manager configuration information.

1.2 Rationale

At present the only definition of what an ebuild can assume about its environment, and the only
definition of what is valid in an ebuild, is the source code of the latest Portage release and a general
consensus about which features are too new to assume availability. This has several drawbacks: not
only is it impossible to change any aspect of Portage behaviour without verifying that nothing in
the tree relies upon it, but if a new package manager should appear it becomes impossible to fully
support such an ill-defined standard.

This document aims to address both of these concerns by defining almost all aspects of what an ebuild
repository looks like, and how an ebuild is allowed to behave. Thus, both Portage and other package
managers can change aspects of their behaviour not defined here without worry of incompatibilities
with any particular repository.

1.3 Conventions

Text in teletype is used for filenames or variable names. Italic text is used for terms with a partic-
ular technical meaning in places where there may otherwise be ambiguity.

The term package manager is used throughout this document in a broad sense. Although some
parts of this document are only relevant to fully featured package managers, many items are equally
applicable to tools or other applications that interact with ebuilds or ebuild repositories.

Chapter 2

EAPIs

2.1 Definition

An EAPI can be thought of as a ‘version’ of this specification to which a package conforms. An
EAPI value is a string as per section 3.1.7, and is part of an ebuild’s metadata.

If a package manager encounters a package version with an unrecognised EAPI, it must not attempt to
perform any operations upon it. It could, for example, ignore the package version entirely (although
this can lead to user confusion), or it could mark the package version as masked. A package manager
must not use any metadata generated from a package with an unrecognised EAPL

The package manager must not attempt to perform any kind of comparison test other than equality
upon EAPIs.

EAPIs are also used for profile directories, as described in section 5.2.2.

2.2 Defined EAPIs

The following EAPIs are defined by this specification:
0 The ‘original’ base EAPL

1 EAPI ‘1’ contains a number of extensions to EAPI ‘0’. Except where explicitly noted, it is in all
other ways identical to EAPI ‘0’.

2 EAPI ‘2’ contains a number of extensions to EAPI ‘1’. Except where explicitly noted, it is in all
other ways identical to EAPI ‘1°.

3 EAPI ‘3’ contains a number of extensions to EAPI ‘2°. Except where explicitly noted, it is in all
other ways identical to EAPT 2°.

4 EAPI ‘4’ contains a number of extensions to EAPI ‘3’. Except where explicitly noted, it is in all
other ways identical to EAPT ‘3’.

5 EAPI °5’ contains a number of extensions to EAPI ‘4’. Except where explicitly noted, it is in all
other ways identical to EAPI ‘4’.

Except where explicitly noted, everything in this specification applies to all of the above EAPIs.!

! Another unofficial EAPI ‘kdebuild-1" was a series of extensions to EAPI ‘1° formerly used by the Gentoo KDE project.
Some of its features have been included in EAPI ‘2’ or later.

10

CHAPTER 2. EAPIS 11

2.3 Reserved EAPIs

o EAPIs whose value consists purely of an integer are reserved for future versions of this speci-
fication.

o EAPIs whose value starts with the string paludis- are reserved for experimental use by the
Paludis package manager.

Chapter 3

Names and Versions

3.1 Restrictions upon Names

No name may be empty. Package managers must not impose fixed upper boundaries upon the length
of any name. A package manager should indicate or reject any name that is invalid according to these
rules.

3.1.1 Category Names

A category name may contain any of the characters [A-Za-z0-9+_.-]. It must not begin with a
hyphen, a dot or a plus sign.

Note: A hyphen is not required because of the virtual category. Usually, however, category
names will contain a hyphen.

3.1.2 Package Names

A package name may contain any of the characters [A-Za-z0-9+_-]. It must not begin with a hyphen
or a plus sign, and must not end in a hyphen followed by one or more digits.

Note: A package name does not include the category. The term qualified package name is used
where a category/package pair is meant.

3.1.3 Slot Names

A slot name may contain any of the characters [A-Za-z0-9+_. -]. It must not begin with a hyphen,
a dot or a plus sign.

3.1.4 USE Flag Names

A USE flag name may contain any of the characters [A-Za-z0-9+_@-]. It must begin with an
alphanumeric character. Underscores should be considered reserved for USE_EXPAND, as described
in section 11.1.1.

Note: The at-sign is required for LINGUAS.

12

CHAPTER 3. NAMES AND VERSIONS 13

3.1.5 Repository Names

A repository name may contain any of the characters [A-Za-z0-9_-]. It must not begin with a
hyphen. In addition, every repository name must also be a valid package name.

3.1.6 Keyword Names

A keyword name may contain any of the characters [A-Za-z0-9_-]. It must not begin with a hyphen.
In contexts where it makes sense to do so, a keyword name may be prefixed by a tilde or a hyphen.
In KEYWORDS, -* is also acceptable as a keyword.

3.1.7 EAPI Names

An EAPI name may contain any of the characters [A-Za-z0-9+_.-]. It must not begin with a
hyphen, a dot or a plus sign.

3.2 Version Specifications

The package manager must not impose fixed limits upon the number of version components. Package
managers should indicate or reject any version that is invalid according to these rules.

A version starts with the number part, which is in the form [0-9]+(\ . [0-9]+) * (a positive integer,
followed by zero or more dot-prefixed positive integers).

This may optionally be followed by one of [a-z] (a lowercase letter).

This may be followed by zero or more of the suffixes _alpha, _beta, _pre, _rc or _p, which
themselves may be suffixed by an optional integer.

This may optionally be followed by the suffix -r followed immediately by an integer (the “revision
number”). If this suffix is not present, it is assumed to be -r0.

3.3 Version Comparison

Version specifications are compared component by component, moving from left to right, as detailed
in Algorithm 1 and sub-algorithms. If a sub-algorithm returns a decision, then that is the result of the
whole comparison; if it terminates without returning a decision, the process continues from the point
from which it was invoked.

Algorithm 1 Version comparison top-level logic

let A and B be the versions to be compared
compare numeric components using Algorithm 2
compare letter components using Algorithm 4
compare suffixes using Algorithm 5

compare revision components using Algorithm 7
return A =5

AN S

3.4 Uniqueness of versions

No two packages in a given repository may have the same qualified package name and equal
versions. For example, a repository may not contain more than one of foo-bar/baz-1.0.2,
foo-bar/baz-1.0.2-r0 and foo-bar/baz-1.000.2.

CHAPTER 3. NAMES AND VERSIONS 14

Algorithm 2 Version comparison logic for numeric components

1:

R A A o

I e T =
AN N AW = O

define the notations Any and Bny to mean the k™ numeric component of A and B respectively,
using 0-based indexing
if Ang > Bng using integer comparison then
return A > B
else if Ang < Bny using integer comparison then
return A < B
end if
let Ann be the number of numeric components of A
let Bnn be the number of numeric components of B
for all i such that i > 1 and i < Ann and i < Bnn, in ascending order do
compare An; and Bn; using Algorithm 3

: end for
. if Ann > Bnn then

return A > B

. else if Ann < Bnn then

return A < B

. end if

Algorithm 3 Version comparison logic for each numeric component after the first

1:
2
3
4
S:
6
7
8
9

10:
11:
12:
13:
14:
15:

if either An; or Bn; has a leading 0 then

let An} be An; with any trailing Os removed

let Bn} be Bn; with any trailing Os removed

if An} > Bn| using ASCII stringwise comparison then
return A > B

else if An! < Bn! using ASCII stringwise comparison then
return A < B

end if

. else

if An; > Bn; using integer comparison then
return A > B
else if An; < Bn; using integer comparison then
return A < B
end if
end if

Algorithm 4 Version comparison logic for letter components

NN RN

let Al be the letter component of A if any, otherwise the empty string
let Bl be the letter component of B if any, otherwise the empty string
if Al > Bl using ASCII stringwise comparison then

return A > B
else if A/ < Bl using ASCII stringwise comparison then

return A < B
end if

CHAPTER 3. NAMES AND VERSIONS 15

Algorithm 5 Version comparison logic for suffixes

1: define the notations As; and Bs; to mean the k™ suffix of A and B respectively, using 0-based
indexing

2: let Asn be the number of suffixes of A
3: let Bsn be the number of suffixes of B
4: for all i such that i > 0 and i < Asn and i < Bsn, in ascending order do
5: compare As; and Bs; using Algorithm 6
6: end for
7. if Asn > Bsn then
8: if Aspgy, is of type _p then
9: return A > B
10: else
11: return A < B
12 endif
13: else if Asn < Bsn then
14: if Bsyyy is of type _p then
15: return A < B
16: else
17: return A > B
18: end if
19: end if

Algorithm 6 Version comparison logic for each suffix

1: if As; and Bs; are of the same type (_alpha vs _beta etc) then

2 let As} be the integer part of As; if any, otherwise O

3 let Bs| be the integer part of Bs; if any, otherwise 0

4 if As} > Bs/, using integer comparison then

5: return A > B

6: elseif As} < Bs, using integer comparison then

7 return A < B

8: endif

9: else if the type of As; is greater than the type of Bs; using the ordering _alpha < _beta <
_pre < _rc < _p then

10: return A > B

11: else

122 return A <B

13: end if

Algorithm 7 Version comparison logic for revision components

let Ar be the integer part of the revision component of A if any, otherwise 0
let Br be the integer part of the revision component of B if any, otherwise 0
if Ar > Br using integer comparison then

return A > B
else if Ar < Br using integer comparison then

return A < B
end if

A A S

Chapter 4

Tree Layout

This chapter defines the layout on-disk of an ebuild repository. In all cases below where a file or
directory is specified, a symlink to a file or directory is also valid. In this case, the package manager
must follow the operating system’s semantics for symbolic links and must not behave differently
from normal.

4.1 Top Level

An ebuild repository shall occupy one directory on disk, with the following subdirectories:

e One directory per category, whose name shall be the name of the category. The layout of these
directories shall be as described in section 4.2.

A profiles directory, described in section 4.4.

A licenses directory (optional), described in section 4.5.

An eclass directory (optional), described in section 4.6.

A metadata directory (optional), described in section 4.7.

Other optional support files and directories (skeleton ebuilds or ChangeLogs, for example)
may exist but are not covered by this specification. The package manager must ignore any of
these files or directories that it does not recognise.

4.2 Category Directories

Each category provided by the repository (see also: the profiles/categories file, section 4.4)
shall be contained in one directory, whose name shall be that of the category. Each category directory
shall contain:

e A metadata.xml file, as described in appendix A. Optional.
e Zero or more package directories, one for each package in the category, as described in sec-
tion 4.3. The name of the package directory shall be the corresponding package name.

Category directories may contain additional files, whose purpose is not covered by this specification.
Additional directories that are not for a package may not be present, to avoid conflicts with package
name directories; an exception is made for filesystem components whose name starts with a dot,
which the package manager must ignore, and for any directory named CVS.

It is not required that a directory exists for each category provided by the repository. A category
directory that does not exist shall be considered equivalent to an empty category (and by extension,
a package manager may treat an empty category as a category that does not exist).

16

CHAPTER 4. TREE LAYOUT 17
4.3 Package Directories

A package directory contains the following:

Zero or more ebuilds. These are as described in section 6 and others.

A metadata.xml file, as described in appendix A. Optional only for legacy support.
A ChangeLog, in a format determined by the provider of the repository. Optional.

A Manifest file, whose format is described in [1].

A files directory, containing any support files needed by the ebuilds. Optional.

Any ebuild in a package directory must be named name-ver . suffix, where:

e name is the (unqualified) package name.
e ver is the package’s version.
e suffixis ebuild.

Package managers must ignore any ebuild file that does not match these rules.

A package directory that contains no correctly named ebuilds shall be considered a package with no
versions. A package with no versions shall be considered equivalent to a package that does not exist
(and by extension, a package manager may treat a package that does not exist as a package with no
versions).

A package directory may contain other files or directories, whose purpose is not covered by this
specification.

4.4 The Profiles Directory

The profiles directory shall contain zero or more profile directories as described in section 5, as well
as the following files and directories. In any line-based file, lines beginning with a # character are
treated as comments, whilst blank lines are ignored. All contents of this directory, with the exception
of repo_name, are optional.

The profiles directory may contain an eapi file. This file, if it exists, must contain a single line with
the name of an EAPI. This specifies the EAPI to use when handling the profiles directory; a package
manager must not attempt to use any repository whose profile directory requires an EAPI it does not
support. If no eapi file is present, EAPI 0 shall be used.

If the repository is not intended to be stand-alone, the contents of these files are to be taken from or
merged with the master repository as necessary.

Other files not described by this specification may exist, but may not be relied upon. The package
manager must ignore any files in this directory that it does not recognise.

arch.list Contains a list, one entry per line, of permissible values for the ARCH variable, and hence
permissible keywords for packages in this repository.

categories Contains a list, one entry per line, of categories provided by this repository.
eapi See above.

info_pkgs Contains a list, one entry per line, of qualified package names. Any package matching
one of these is to be listed when a package manager displays a ‘system information’ listing.

info_vars Contains a list, one entry per line, of profile, configuration, and environment variables
which are considered to be of interest. The value of each of these variables may be shown
when the package manager displays a ‘system information’ listing.

package.mask Contains a list, one entry per line, of package dependency specifications (using the
directory’s EAPI). Any package version matching one of these is considered to be masked,
and will not be installed regardless of profile unless it is unmasked by the user configuration.

profiles.desc Described below in section 4.4.1.

CHAPTER 4. TREE LAYOUT 18

repo_name Contains, on a single line, the name of this repository. The repository name must con-
form to section 3.1.5.

thirdpartymirrors Described below in section 4.4.2.

use.desc Contains descriptions of valid global USE flags for this repository. The format is described
in section 4.4.3.

use.local.desc Contains descriptions of valid local USE flags for this repository, along with the
packages to which they apply. The format is as described in section 4.4.3.

desc/ This directory contains files analogous to use.desc for the various USE_EXPAND variables.
Each file in it is named <varname>.desc, where <varname> is the variable name, in low-
ercase, whose possible values the file describes. The format of each file is as for use.desc,
described in section 4.4.3. The USE_EXPAND name is not included as a prefix here.

updates/ This directory is described in section 4.4.4.

4.4.1 The profiles.desc file

profiles.descis aline-based file, with the standard commenting rules from section 4.4, containing
a list of profiles that are valid for use, along with their associated architecture and status. Each line
has the format:

<keyword> <profile path> <stability>
Where:

e <keyword> is the default keyword for the profile and the ARCH for which the profile is valid.

e <profile path> is the (relative) path from the profiles directory to the profile in question.

e <stability> indicates the stability of the profile. This may be useful for QA tools, which
may wish to display warnings with a reduced severity for some profiles. The values stable
and dev are widely used, but repositories may use other values.

Fields are whitespace-delimited.

4.4.2 The thirdpartymirrors file

thirdpartymirrors is another simple line-based file, describing the valid mirrors for use with
mirror:// URIs in this repository, and the associated download locations. The format of each line
is:

<mirror name> <mirror 1> <mirror 2> ... <mirror n>

Fields are whitespace-delimited. When parsing a URI of the form mirror://name/path/
filename, where the path/ part is optional, the thirdpartymirrors file is searched for a line
whose first field is name. Then the download URIs in the subsequent fields have path/filename
appended to them to generate the URIs from which a download is attempted.

Each mirror name may appear at most once in a file. Behaviour when a mirror name appears multiple
times is undefined. Behaviour when a mirror is defined in terms of another mirror is undefined. A
package manager may choose to fetch from all of or a subset of the listed mirrors, and may use an
order other than the one described.

The mirror with the name equal to the repository’s name (and if the repository has a master, the
master’s name) may be consulted for all downloads.

4.4.3 use.desc and related files

use.desc contains descriptions of every valid global USE flag for this repository. It is a line-based
file with the standard rules for comments and blank lines. The format of each line is:

CHAPTER 4. TREE LAYOUT 19

<flagname> - <description>

use.local.desc contains descriptions of every valid local USE flag—those that apply only to a
small number of packages, or that have different meanings for different packages. Its format is:

<category/package>:<flagname> - <description>

Flags must be listed once for each package to which they apply, or if a flag is listed in both use . desc
and use.local.desc, it must be listed once for each package for which its meaning differs from
that described in use.desc.

4.4.4 The updates directory

The updates directory is used to inform the package manager that a package has moved cate-
gories, names, or that a version has changed SLOT. It contains one file per quarter year, named
[1-41Q-[YYYY] for the first to fourth quarter of a given year, for example 1Q-2004 or 3Q-2006.
The format of each file is again line-based, with each line having one of the following formats:

move <gpnl> <qpn2>
slotmove <spec> <slotl> <slot2>

The first form, where qpnl and qpn2 are qualified package names, instructs the package manager
that the package qpn1 has changed name, category, or both, and is now called qpn2.

The second form instructs the package manager that any currently installed package version matching
package dependency specification spec whose SLOT is set to slot1 should have it updated to slot2.

Any name that has appeared as the origin of a move must not be reused in the future. Any slot that
has appeared as the origin of a slot move may not be used by packages matching the spec of that slot
move in the future.

4.5 The Licenses Directory

The licenses directory shall contain copies of the licenses used by packages in the repository. Each
file will be named according to the name used in the LICENSE variable as described in section 7.3,
and will contain the complete text of the license in human-readable form. Plain text format is strongly
preferred but not required.

4.6 The Eclass Directory

The eclass directory shall contain copies of the eclasses provided by this repository. The format of
these files is described in section 10. It may also contain, in their own directory, support files needed
by these eclasses.

4.7 The Metadata Directory

The metadata directory contains various repository-level metadata that is not contained in
profiles/. All contents are optional. In this standard only the cache subdirectory is described;
other contents are optional but may include security advisories, DTD files for the various XML files
used in the repository, and repository timestamps.

4.7.1 The metadata cache

The metadata/cache directory may contain a cached form of all important ebuild metadata vari-
ables. The contents of this directory are described in section 13.

Chapter 5

Profiles

5.1 General principles

Generally, a profile defines information specific to a certain ‘type’ of system—it lies somewhere
between repository-level defaults and user configuration in that the information it contains is not
necessarily applicable to all machines, but is sufficiently general that it should not be left to the user
to configure it. Some parts of the profile can be overridden by user configuration, some only by
another profile.

The format of a profile is relatively simple. Each profile is a directory containing any number of the
files described in this chapter, and possibly inheriting another profile. The files themselves follow a
few basic conventions as regards inheritance and format; these are described in the next section. It
may also contain any number of subdirectories containing other profiles.

5.2 Files that make up a profile

5.2.1 The parent file

A profile may contain a parent file. Each line must contain a relative path to another profile which
will be considered as one of this profile’s parents. Any settings from the parent are inherited by this
profile, and can be overridden by it. Precise rules for how settings are combined with the parent
profile vary between files, and are described below. Parents are handled depth first, left to right, with
duplicate parent paths being sourced for every time they are encountered.

It is illegal for a profile’s parent tree to contain cycles. Package manager behaviour upon encounter-
ing a cycle is undefined.

This file must not contain comments, blank lines or make use of line continuations.

5.2.2 The eapi file

A profile directory may contain an eapi file. This file, if it exists, must contain a single line with the
name of an EAPI. This specifies the EAPI to use when handling the directory in question; a package
manager must not attempt to use any profile using a directory which requires an EAPI it does not
support. If no eapi file is present, EAPI O shall be used. The EAPI is not inherited via the parent
file.

20

CHAPTER 5. PROFILES 21

5.2.3 deprecated

If a profile contains a file named deprecated, it is treated as such. The first line of this file should
contain the path from the profiles directory of the repository to a valid profile that is the recom-
mended upgrade path from this profile. The remainder of the file can contain any text, which may
be displayed to users using this profile by the package manager. This file is not inherited—profiles
which inherit from a deprecated profile are not deprecated.

This file must not contain comments or make use of line continuations.

5.2.4 make.defaults

make.defaults is used to define defaults for various environment and configuration variables. This
file is unusual in that it is not combined at a file level with the parent—instead, each variable is
combined or overridden individually as described in section 5.3.

The file itself is a line-based key-value format. Each line contains a single VAR="value" entry,
where the value must be double quoted. A variable name must start with one of a-zA-Z and may
contain a-zA-Z0-9_ only. Additional syntax, which is a small subset of bash syntax, is allowed as
follows:

e Variables to the right of the equals sign in the form ${foo} or $foo are recognised and ex-
panded from variables previously set in this or earlier make . defaults files.

e One logical line may be continued over multiple physical lines by escaping the newline with
a backslash. A quoted string may be continued over multiple physical lines by either a simple
newline or a backslash-escaped newline.

e Backslashes, except for line continuations, are not allowed.

5.2.5 Simple line-based files

These files are a simple one-item-per-line list, which is inherited in the following manner: the parent
profile’s list is taken, and the current profile’s list appended. If any line begins with a hyphen, then
any lines previous to it whose contents are equal to the remainder of that line are removed from the
list. Once again, blank lines and those beginning with a # are discarded.

5.2.6 packages

The packages file is used to define the ‘system set’ for this profile. After the above rules for in-
heritance and comments are applied, its lines must take one of two forms: a package dependency
specification prefixed by * denotes that the atom forms part of the system set. A package depen-
dency specification on its own may also appear for legacy reasons, but should be ignored when
calculating the system set.

5.2.7 packages.build

The packages.build file is used by Gentoo’s Catalyst tool to generate stagel tarballs, and has no
relevance to the operation of a package manager. It is thus outside the scope of this document, but is
mentioned here for completeness.

5.2.8 package.mask

package .mask is used to prevent packages from being installed on a given profile. Each line con-
tains one package dependency specification; anything matching this specification will not be installed
unless unmasked by the user’s configuration.

CHAPTER 5. PROFILES 22

Table 5.1: Profile directory support for masking/forcing use flags in stable versions only

EAPI Supports masking/forcing use flags in stable versions?

No
No

o W N RO
Z
o

Note that the -spec syntax can be used to remove a mask in a parent profile, but not necessarily a
global mask (from profiles/package .mask, section 4.4).

Note: Portage currently treats profiles/package .mask as being on the leftmost branch of the
inherit tree when it comes to -1ines. This behaviour may not be relied upon.

5.2.9 package.provided

package.provided is used to tell the package manager that a certain package version should be
considered to be provided by the system regardless of whether it is actually installed. Because it has
severe adverse effects on USE-based and slot-based dependencies, its use is strongly deprecated and
package manager support must be regarded as purely optional.

5.2.10 package.use

The package . use file may be used by the package manager to override the default USE flags spec-
ified by make .defaults on a per package basis. The format is to have a package dependency spec-
ification, and then a space delimited list of USE flags to enable. A USE flag in the form of -flag
indicates that the package should have the USE flag disabled. The package dependency specification
is limited to the forms defined by the directory’s EAPI.

5.2.11 USE masking and forcing

This section covers the eight files use .mask, use.force, use.stable.mask, use.stable.force,
package.use.mask, package.use.force, package.use.stable.mask, and package.use.
stable.force. They are described together because they interact in a non-trivial manner.

Simply speaking, use.mask and use.force are used to say that a given USE flag must
never or always, respectively, be enabled when using this profile. package.use.mask and
package.use.force do the same thing on a per-package, or per-version, basis.

In profile directories with an EAPI supporting stable masking, as listed in table 5.1, the same is true
for use.stable.mask, use.stable.force, package.use.stable.mask and package.use.
stable.force. These files, however, only act on packages that are merged due to a stable key-
word in the sense of subsection 7.3.2. Thus, these files can be used to restrict the feature set deemed
stable in a package.

The precise manner in which the eight files interact is less simple, and is best described in terms
of the algorithm used to determine whether a flag is masked for a given package version. This is
described in Algorithm 8.

Stable restrictions (“stable keyword in use” in Algorithm 8) are applied exactly if replacing in
KEYWORDS all stable keywords by the corresponding tilde prefixed keywords (see subsection 7.3.2)
would result in the package installation being prevented due to the KEYWORDS setting.

STABLEMASK

CHAPTER 5. PROFILES 23

Algorithm 8 USE masking logic

1: let masked = false
2: for each profile in the inheritance tree, depth first do

3:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

4
5:
6:
7
8
9

if use .mask contains flag then
let masked = true
else if use .mask contains -flag then
let masked = false
end if
if stable keyword in use then
if use.stable.mask contains flag then
let masked = true
else if use. stable.mask contains -flag then
let masked = false
end if
end if
for each line in package.use.mask, in order, for which the spec matches package do
if line contains flag then
let masked = true
else if /ine contains -flag then
let masked = false
end if
end for
if stable keyword in use then
for each /ine in package.use.stable.mask, in order, for which the spec matches package do
if line contains flag then
let masked = true
else if /ine contains -flag then
let masked = false
end if
end for
end if

31: end for

CHAPTER 5. PROFILES 24

Table 5.2: Profile-defined IUSE injection for EAPIs

EAPI Supports profile-defined IUSE injection?

No
No

o W N RO
Z
o

The logic for use.force, use.stable.force, package.use.force, and package.use.
stable.force is identical. If a flag is both masked and forced, the mask is considered to take
precedence.

USE_EXPAND values may be forced or masked by using expand_name_value.

A package manager may treat ARCH values that are not the current architecture as being masked.

5.3 Profile variables

This section documents variables that have special meaning, or special behaviour, when defined in a
profile’s make .defaults file.

5.3.1 Incremental Variables

Incremental variables must stack between parent and child profiles in the following manner: Begin-
ning with the highest parent profile, tokenise the variable’s value based on whitespace and concate-
nate the lists. Then, for any token 7 beginning with a hyphen, remove it and any previous tokens
whose value is equal to 7 with the hyphen removed, or, if T is equal to -*, remove all previous
values. Note that because of this treatment, the order of tokens in the final result is arbitrary, not nec-
essarily related to the order of tokens in any given profile. The following variables must be treated in
this fashion:

USE

USE_EXPAND
USE_EXPAND_HIDDEN
CONFIG_PROTECT
CONFIG_PROTECT_MASK

If the package manager supports any EAPI listed in table 5.2 as using profile-defined IUSE injection,
the following variables must also be treated incrementally; otherwise, the following variables may or
may not be treated incrementally:

e TUSE_IMPLICIT
e USE_EXPAND_IMPLICIT
e USE_EXPAND_UNPREFIXED

Other variables, except where they affect only package-manager-specific functionality (such as
Portage’s FEATURES variable), must not be treated incrementally—later definitions shall completely
override those in parent profiles.

5.3.2 Specific variables and their meanings

The following variables have specific meanings when set in profiles.

ARCH The system’s architecture. Must be a value listed in profiles/arch.list; see section 4.4
for more information. Must be equal to the primary KEYWORD for this profile.

CHAPTER 5. PROFILES 25

CONFIG_PROTECT, CONFIG_PROTECT_MASK Contain whitespace-delimited lists used to
control the configuration file protection. Described more fully in chapter 12.3.3.

USE Defines the list of default USE flags for this profile. Flags may be added or removed by the
user’s configuration. USE_EXPAND values must not be specified in this way.

USE_EXPAND Defines a list of variables which are to be treated incrementally and whose contents
are to be expanded into the USE variable as passed to ebuilds. See section 11.1.1 for details.

USE_EXPAND_UNPREFIXED Similar to USE_EXPAND, but no prefix is used. If the repository
contains any package using an EAPI supporting profile-defined IUSE injection (see table 5.2),
this list must contain at least ARCH. See section 11.1.1 for details.

USE_EXPAND_HIDDEN Contains a (possibly empty) subset of names from USE_EXPAND and
USE_EXPAND_UNPREFIXED. The package manager may use this set as a hint to avoid display-
ing uninteresting or unhelpful information to an end user.

USE_EXPAND_IMPLICIT, IUSE_IMPLICIT Used to inject implicit values into TUSE. See sec-
tion 11.1.1 for details.

In addition, for EAPISs listed in table 5.2 as supporting profile defined IUSE injection, the variables
named in USE_EXPAND and USE_EXPAND_UNPREFIXED have special handling as described in sec-
tion 11.1.1.

Any other variables set in make . defaults must be passed on into the ebuild environment as-is, and
are not required to be interpreted by the package manager.

Chapter 6

Ebuild File Format

The ebuild file format is in its basic form a subset of the format of a bash script. The interpreter is
assumed to be GNU bash, version 3.2 or later, see footnote 5 on page 57. The file encoding must
be UTF-8 with Unix-style newlines. When sourced, the ebuild must define certain variables and
functions (see sections 7 and 9 for specific information), and must not call any external programs,
write anything to standard output or standard error, or modify the state of the system in any way.

26

Chapter 7

Ebuild-defined Variables

Note: This section describes variables that may or must be defined by ebuilds. For variables that
are passed from the package manager to the ebuild, see section 11.1.

If any of these variables are set to invalid values, or if any of the mandatory variables are undefined,
the package manager’s behaviour is undefined; ideally, an error in one ebuild should not prevent
operations upon other ebuilds or packages.

7.1 Metadata invariance

All ebuild-defined variables discussed in this chapter must be defined independently of any system,
profile or tree dependent data, and must not vary depending upon the ebuild phase. In particular,
ebuild metadata can and will be generated on a different system from that upon which the ebuild will
be used, and the ebuild must generate identical metadata every time it is used.

Globally defined ebuild variables without a special meaning must similarly not rely upon variable
data.

7.2 Mandatory Ebuild-defined Variables

All ebuilds must define at least the following variables:

DESCRIPTION A short human-readable description of the package’s purpose. May be defined by
an eclass. Must not be empty.

SLOT The package’s slot. Must be a valid slot name, as per section 3.1.3. May be defined by an
eclass. Must not be empty.

In EAPIs shown in table 8.4 as supporting sub-slots, the SLOT variable may contain an optional
sub-slot part that follows the regular slot and is delimited by a / character. The sub-slot must
be a valid slot name, as per section 3.1.3. The sub-slot is used to represent cases in which
an upgrade to a new version of a package with a different sub-slot may require dependent
packages to be rebuilt. When the sub-slot part is omitted from the SLOT definition, the package
is considered to have an implicit sub-slot which is equal to the regular slot.

7.3 Optional Ebuild-defined Variables

Ebuilds may define any of the following variables:

EAPI The EAPI. See below.

27

CHAPTER 7. EBUILD-DEFINED VARIABLES 28

Table 7.1: EAPIs supporting IUSE defaults

EAPI Supports IUSE defaults?

No

Yes
Yes
Yes
Yes
Yes

O WN - O

Table 7.2: EAPIs supporting various ebuild-defined variables

EAPI Supports PROPERTIES? Supports REQUIRED_USE?

0 Optionally No
1 Optionally No
2 Optionally No
3 Optionally No
4 Yes Yes
5 Yes Yes

HOMEPAGE The URI or URIs for a package’s homepage, including protocols. See section 8§ for
full syntax.

SRC_URI A list of source URISs for the package. Valid protocols are http://, https://, ftp://
and mirror:// (see section 4.4.2 for mirror behaviour). Fetch restricted packages may in-
clude URL parts consisting of just a filename. See section 8 for full syntax.

LICENSE The package’s license. Each text token must correspond to a tree “licenses/” entry (see
section 4.5). See section 8 for full syntax.

KEYWORDS A whitespace separated list of keywords for the ebuild. Each token must be a valid
keyword name, as per section 3.1.6. See section 7.3.2 for full syntax.

IUSE The USE flags used by the ebuild. Any eclass that works with USE flags must also set IUSE,
listing only the variables used by that eclass. The package manager is responsible for merging
these values. See section 11.1.1 for discussion on which values must be listed this variable.

In EAPIs shown in table 7.1 as supporting IUSE defaults, any use flag name in IUSE may be
prefixed by at most one of a plus or a minus sign. If such a prefix is present, the package man-
ager may use it as a suggestion as to the default value of the use flag if no other configuration
overrides it.

REQUIRED_USE Zero or more assertions that must be met by the configuration of USE flags to be
valid for this ebuild. See section 8.2.7 for description and section 8 for full syntax. Only in
EAPIs listed in table 7.2 as supporting REQUIRED_USE.

PROPERTIES Zero or more properties for this package. See section 8.2.9 for value meanings and
section 8 for full syntax. For EAPIs listed in table 7.2 as having optional support, ebuilds must
not rely upon the package manager recognising or understanding this variable in any way.

RESTRICT Zero or more behaviour restrictions for this package. See section 8.2.8 for value mean-
ings and section 8 for full syntax.

DEPEND See section 8.

RDEPEND See section 8. For some EAPIs, RDEPEND has special behaviour for its value if unset
and when used with an eclass. See section 7.3.3 for details.

PDEPEND See section 8.

| IUSE-DEFAULTS

REQUIRED-USE

PROPERTIES

CHAPTER 7. EBUILD-DEFINED VARIABLES 29

7.3.1 EAPI

An empty or unset EAPI value is equivalent to 0. Ebuilds must not assume that they will get a
particular one of these two values if they are expecting one of these two values.

The package manager must either pre-set the EAPI variable to O or ensure that it is unset before
sourcing the ebuild for metadata generation. When using the ebuild for other purposes, the package
manager must either pre-set EAPI to the value specified by the ebuild’s metadata or ensure that it is
unset.

If any of these variables are set to invalid values, the package manager’s behaviour is undefined;
ideally, an error in one ebuild should not prevent operations upon other ebuilds or packages.

If the EAPI is to be specified in an ebuild, the EAPI variable must be assigned to precisely once.
The assignment must not be preceded by any lines other than blank lines or those that start with
optional whitespace (spaces or tabs) followed by a # character, and the line containing the assignment
statement must match the following regular expression:

~[\tI*EAPI=([’"17) ([A-Za-z0-9+_.-1+)\1[\t1*([\tl#.%)7$

The package manager must determine the EAPI of an ebuild by parsing its first non-blank and non-
comment line, using the above regular expression. If it matches, the EAPI is the substring matched
by the capturing parentheses (O if empty), otherwise it is 0. For a recognised EAPI, the package
manager must make sure that the EAPI value obtained by sourcing the ebuild with bash is identical
to the EAPI obtained by parsing. The ebuild must be treated as invalid if these values are different.

7.3.2 Keywords

Keywords are used to indicate levels of stability of a package on a respective architecture arch. The
following conventions are used:

e arch: Both the package version and the ebuild are widely tested, known to work and not have
any serious issues on the indicated platform. This is referred to as a stable keyword.

e ~arch: The package version and the ebuild are believed to work and do not have any known
serious bugs, but more testing is required before the package version is considered suitable for
obtaining a stable keyword. This is referred to as an unstable keyword or a testing keyword.

e No keyword: It is not known whether the package will work, or insufficient testing has oc-
curred.

e -arch: The package version will not work on the architecture.

The -* keyword is used to indicate package versions which are not worth trying to test on unlisted
architectures.

An empty KEYWORDS variable indicates uncertain functionality on any architecture.

7.3.3 RDEPEND value

In EAPIs listed in table 7.3 as having RDEPEND=DEPEND, if RDEPEND is unset (but not if it is set to
an empty string) in an ebuild, when generating metadata the package manager must treat its value as
being equal to the value of DEPEND.

When dealing with eclasses, only values set in the ebuild itself are considered for this behaviour; any
DEPEND or RDEPEND set in an eclass does not change the implicit RDEPEND=DEPEND for the ebuild
portion, and any DEPEND value set in an eclass does not get treated as being part of RDEPEND.

l RDEPEND-DEPEND

CHAPTER 7. EBUILD-DEFINED VARIABLES 30

Table 7.3: EAPIs with RDEPEND=DEPEND Default

EAPI RDEPEND=DEPEND?

Yes
Yes
Yes
Yes
No
No

ad W N~ O

Table 7.4: EAPIs supporting DEFINED_PHASES

EAPI Supports DEFINED_PHASES?

Optionally
Optionally
Optionally
Optionally
Yes
Yes

a s WN - O

7.4 Magic Ebuild-defined Variables

The following variables must be defined by inherit (see section 10.1, and may be considered to be
part of the ebuild’s metadata:

ECLASS The current eclass, or unset if there is no current eclass. This is handled magically by
inherit and must not be modified manually.

INHERITED List of inherited eclass names. Again, this is handled magically by inherit.

Note: Thus, by extension of section 7.1, inherit may not be used conditionally, except upon
constant conditions.

The following are special variables defined by the package manager for internal use and may or may
not be exported to the ebuild environment:

DEFINED_PHASES A space separated arbitrarily ordered list of phase names (e.g. configure
setup unpack) whose phase functions are defined by the ebuild or an eclass inherited by the
ebuild. If no phase functions are defined, a single hyphen is used instead of an empty string.
For EAPISs listed in table 7.4 as having optional DEFINED_PHASES support, package managers
may not rely upon the metadata cache having this variable defined, and must treat an empty
string as “this information is not available”.

Note: Thus, by extension of section 7.1, phase functions must not be defined based upon any
variant condition.

’ DEFINED-PHASES

Chapter 8

Dependencies

8.1 Dependency Classes

There are three classes of dependencies supported by ebuilds:

e Build dependencies (DEPEND). These must be installed and usable before any of the ebuild
src_x* phase functions is executed. These may not be installed at all if a binary package is
being merged.

e Runtime dependencies (RDEPEND). These must be installed and usable before the results of an
ebuild merging are treated as usable.

e Post dependencies (PDEPEND). These must be installed at some point before the package man-
ager finishes the batch of installs.

Table 8.1 lists dependencies which must be satisfied before a particular phase function is executed.

In addition, SRC_URI, HOMEPAGE, RESTRICT, PROPERTIES, LICENSE and REQUIRED_USE use
dependency-style specifications to specify their values.

8.2 Dependency Specification Format

The following elements are recognised in at least one class of specification. All elements must be
surrounded on both sides by whitespace, except at the start and end of the string.

e A package dependency specification. Permitted in DEPEND, RDEPEND, PDEPEND.

e A URI, in the form proto://host/path. Permitted in SRC_URI and HOMEPAGE. In EAPIs

listed in table 8.2 as supporting SRC_URI arrows, may optionally be followed by whitespace,

then ->, then whitespace, then a simple filename when in SRC_URI. For SRC_URI behaviour,

see section 8.2.10.

A flat filename. Permitted in SRC_URI.

A license name (e. g. GPL-2). Permitted in LICENSE.

A use flag name, optionally preceded by an exclamation mark. Permitted in REQUIRED_USE.

A simple string. Permitted in RESTRICT and PROPERTIES.

An all-of group, which consists of an open parenthesis, followed by whitespace, followed by

zero or more of (a dependency item of any kind followed by whitespace), followed by a close

parenthesis. More formally: all-of ::= ’(’ whitespace (item whitespace)* ’)°.

Permitted in all specification style variables.

e An any-of group, which consists of the string | |, followed by whitespace, followed by an open
parenthesis, followed by whitespace, followed by zero or more of (a dependency item of any
kind followed by whitespace), followed by a close parenthesis. More formally: any-of ::=
’||’ whitespace ’(’ whitespace (item whitespace)* ’)’. Permitted in DEPEND,
RDEPEND, PDEPEND, LICENSE, REQUIRED_USE.

31

CHAPTER 8. DEPENDENCIES 32

Table 8.1: Dependency classes required to be satisfied for a particular phase function

Phase function Satisfied dependency classes

pkg_pretend, None (ebuilds can rely only on the packages in the system set)
pkg_setup,

pkg_info,

pkg_nofetch

src_unpack, DEPEND

src_prepare,

src_configure,

src_compile,

src_test,
src_install
pkg_preinst, RDEPEND (unless the particular dependency results in a circular depen-
pkg_postinst, dency, in which case it may be installed later)
pkg_prerm,
pkg_postrm
pkg_config RDEPEND, PDEPEND
Table 8.2: EAPIs supporting SRC_URI arrows
EAPI Supports SRC_URI arrows?
0 No
1 No
2 Yes
3 Yes
4 Yes
5 Yes
e An exactly-one-of group, which consists of the string ~~, followed by whitespace, fol-

lowed by an open parenthesis, followed by whitespace, followed by zero or more of (a
dependency item of any kind followed by whitespace), followed by a close parenthe-
sis. More formally: exactly-one-of ::= ’~~’ whitespace ’(’ whitespace (item
whitespace)* ’)°’. Permitted in REQUIRED_USE.

e An at-most-one-of group, which consists of the string 77, followed by whitespace, fol-]AT—MOST—ONE—OF

lowed by an open parenthesis, followed by whitespace, followed by zero or more of (a
dependency item of any kind followed by whitespace), followed by a close parenthesis.
More formally: exactly-one-of ::= 77’ whitespace ’(’ whitespace (item
whitespace)* ’)’. Permitted in REQUIRED_USE in EAPIs listed in table 8.3 as supporting
REQUIRED_USE 7?77 groups.

e A use-conditional group, which consists of an optional exclamation mark, followed by a use
flag name, followed by a question mark, followed by whitespace, followed by an open paren-
thesis, followed by whitespace, followed by zero or more of (a dependency item of any kind
followed by whitespace), followed by a close parenthesis. More formally: use-conditional
::= 21’7 flag-name ’7’ whitespace ’(’ whitespace (item whitespace)x*
>) ’. Permitted in all specification style variables.

In particular, note that whitespace is not optional.

8.2.1 All-of Dependency Specifications

In an all-of group, all of the child elements must be matched.

CHAPTER 8. DEPENDENCIES 33

Table 8.3: EAPIs supporting REQUIRED_USE 77 groups

EAPI Supports REQUIRED_USE 77 groups?

as WwN RO
Z
o

8.2.2 Use-conditional Dependency Specifications
In a use-conditional group, if the associated use flag is enabled (or disabled if it has an exclamation
mark prefix), all of the child elements must be matched.

It is an error for a flag to be used if it is not included in TUSE_EFFECTIVE as described in sec-
tion 11.1.1.

8.2.3 Any-of Dependency Specifications

Any use-conditional group that is an immediate child of an any-of group, if not enabled (disabled
for an exclamation mark prefixed use flag name), is not considered a member of the any-of group for
match purposes.

In an any-of group, at least one immediate child element must be matched. A blocker is considered
to be matched if its associated package dependency specification is not matched.

An empty any-of group counts as being matched.

8.2.4 Exactly-one-of Dependency Specifications

Any use-conditional group that is an immediate child of an exactly-one-of group, if not enabled
(disabled for an exclamation mark prefixed use flag name), is not considered a member of the exactly-
one-of group for match purposes.

In an exactly-one-of group, exactly one immediate child element must be matched.

An empty exactly-one-of group counts as being matched.

8.2.5 At-most-one-of Dependency Specifications

Any use-conditional group that is an immediate child of an at-most-one-of group, if not enabled
(disabled for an exclamation mark prefixed use flag name), is not considered a member of the at-
most-one-of group for match purposes.

In an at-most-one-of group, at most one immediate child element must be matched.

An empty at-most-one-of group counts as being matched.

8.2.6 Package Dependency Specifications

A package dependency can be in one of the following base formats. A package manager must warn
or error on non-compliant input.

e A simple category/package name.
e An operator, as described in section 8.2.6.1, followed immediately by category/package,
followed by a hyphen, followed by a version specification.

CHAPTER 8. DEPENDENCIES 34

Table 8.4: Support for SLOT dependencies and sub-slots in EAPIs

EAPI Supports SLOT dependencies? Supports sub-slots?

0 No No
1 Named only No
2 Named only No
3 Named only No
4 Named only No
5 Named and operator Yes

Table 8.5: EAPIs supporting USE dependencies

EAPI Supports USE dependencies?

No
No
2-style
2-style
4-style
4-style

a s W N~ O

In EAPIs shown in table 8.4 as supporting SLOT dependencies, either of the above formats may
additionally be suffixed by a :slot restriction, as described in section 8.2.6.3. A package manager
must warn or error if slot dependencies are used with an EAPI not supporting SLOT dependencies.

In EAPIs shown in table 8.5 as supporting 2-style or 4-style USE dependencies, a specification may
additionally be suffixed by at most one 2-style or 4-style [use] restriction, as described in sec-
tion 8.2.6.4. A package manager must warn or error if this feature is used with an EAPI not support-
ing use dependencies.

Note: Order is important. The slot restriction must come before use dependencies.

8.2.6.1 Operators

The following operators are available:
< Strictly less than the specified version.
<= Less than or equal to the specified version.

= Exactly equal to the specified version. Special exception: if the version specified has an asterisk
immediately following it, a string prefix comparison is used instead. When an asterisk is used,
the specification must remain valid if the asterisk were removed. (An asterisk used with any
other operator is illegal.)

~ Equal to the specified version, except the revision part of the matching package may be greater than
the revision part of the specified version (-r0 is assumed if no revision is explicitly stated).

>= Greater than or equal to the specified version.

> Strictly greater than the specified version.

8.2.6.2 Block Operator

If the specification is prefixed with one or two exclamation marks, the named dependency is a block
rather than a requirement—that is to say, the specified package must not be installed, with the fol-
lowing exceptions:

e Blocks on a package provided exclusively by the ebuild do not count.

USE-DEPS

CHAPTER 8. DEPENDENCIES 35

Table 8.6: Exclamation mark strengths for EAPIs

EAPI ! '
0 Unspecified Forbidden
1 Unspecified Forbidden
2 Weak Strong
3 Weak Strong
4 Weak Strong
5 Weak Strong

e Weak blocks on the package version of the ebuild itself do not count.

There are two strengths of block: weak and strong. A weak block may be ignored by the package
manager, so long as any blocked package will be uninstalled later on. A strong block must not be
ignored. The mapping from one or two exclamation marks to strength is described in table 8.6.

8.2.6.3 Slot Dependencies

A named slot dependency consists of a colon followed by a slot name. A specification with a named
slot dependency matches only if the slot of the matched package is equal to the slot specified. If
the slot of the package to match cannot be determined (e. g. because it is not a supported EAPI), the
match is treated as unsuccessful.

In EAPIs shown in table 8.4 as supporting sub-slots, a slot dependency may contain an optional
sub-slot part that follows the regular slot and is delimited by a / character.

An operator slot dependency consists of a colon followed by one of the following operators:

* Indicates that any slot value is acceptable. In addition, for runtime dependencies, indicates that
the package will not break if the matched package is uninstalled and replaced by a different
matching package in a different slot.

= Indicates that any slot value is acceptable. In addition, for runtime dependencies, indicates that
the package will break unless a matching package with slot and sub-slot equal to the slot and
sub-slot of the best installed version at the time the package was installed is available.

slot= Indicates that only a specific slot value is acceptable, and otherwise behaves identically to the
plain equals slot operator.

To implement the equals slot operator, the package manager will need to store the slot/sub-slot pair
of the best installed version of the matching package. This syntax is only for package manager use
and must not be used by ebuilds. The package manager may do this by inserting the appropriate
slot/sub-slot pair between the colon and equals sign when saving the package’s dependencies. The
sub-slot part must not be omitted here (when the SLOT variable omits the sub-slot part, the package
is considered to have an implicit sub-slot which is equal to the regular slot).

8.2.6.4 2-Style and 4-Style Use Dependencies

A 2-style or 4-style use dependency consists of one of the following:
[opt] The flag must be enabled.

[opt=] The flag must be enabled if the flag is enabled for the package with the dependency, or
disabled otherwise.

[lopt=] The flag must be disabled if the flag is enabled for the package with the dependency, or
enabled otherwise.

[opt?] The flag must be enabled if the flag is enabled for the package with the dependency.
[!opt?] The flag must be disabled if the use flag is disabled for the package with the dependency.

| BANG-STRENGTH

SLOT-DEPS

SUB-SLOT

’ SLOT-OPERATOR-DEPS

CHAPTER 8. DEPENDENCIES 36

[-opt] The flag must be disabled.
Multiple requirements may be combined using commas, e. g. [first,-second,third?].
When multiple requirements are specified, all must match for a successful match.

In a 4-style use dependency, the flag name may immediately be followed by a default specified by
either (+) or (-). The former indicates that, when applying the use dependency to a package that
does not have the flag in question in IUSE_REFERENCEABLE, the package manager shall behave as if
the flag were present and enabled; the latter, present and disabled.

Unless a 4-style default is specified, it is an error for a use dependency to be applied to an ebuild
which does not have the flag in question in TUSE_REFERENCEABLE.

Note: By extension of the above, a default that could reference an ebuild using an EAPI not sup-
porting profile TUSE injections cannot rely upon any particular behaviour for flags that would not
have to be part of TUSE.

It is an error for an ebuild to use a conditional use dependency when that ebuild does not have the
flag in IUSE_EFFECTIVE.

8.2.7 Use State Constraints

REQUIRED_USE contains a list of assertions that must be met by the configuration of USE flags to be
valid for this ebuild. In order to be matched, a USE flag in a terminal element must be enabled (or
disabled if it has an exclamation mark prefix).

If the package manager encounters a package version where REQUIRED_USE assertions are not met,
it must treat this package version as if it was masked. No phase functions must be called.

It is an error for a flag to be used if it is not included in IUSE_EFFECTIVE.

8.2.8 Restrict

The following tokens are permitted inside RESTRICT:

mirror The package’s SRC_URI entries may not be mirrored, and mirrors should not be checked
when fetching.

fetch The package’s SRC_URI entries may not be downloaded automatically. If entries are not avail-
able, pkg_nofetch is called.

strip No stripping of debug symbols from files to be installed may be performed.
userpriv The package manager may not drop root privileges when building the package.
test The src_test phase must not be run.

sandbox The sandbox tool must not be used when building the package.

Package managers may recognise other tokens, but ebuilds may not rely upon them being supported.

8.2.9 Properties

The following tokens are permitted inside PROPERTIES:
interactive The package may require interaction with the user via the tty.

Ebuilds may not rely upon any token being supported.

’ USE-DEP-DEFAULTS

CHAPTER 8. DEPENDENCIES 37

8.2.10 SRC_URI

All filename components that are enabled (i. e. not inside a use-conditional block that is not matched)
in SRC_URI must be available in the DISTDIR directory. In addition, these components are used to
make the A and AA variables.

If a component contains a full URI with protocol, that download location must be used. Package
managers may also consult mirrors for their files.

The special mirror:// protocol must be supported. See section 4.4.2 for mirror details.

If a simple filename rather than a full URI is provided, the package manager can only use mirrors to
download the file.

The RESTRICT metadata key can be used to impose additional restrictions upon downloading—see
section 8.2.8 for details.

In EAPIs supporting arrows, if an arrow is used, the filename used when saving to DISTDIR shall
instead be the name on the right of the arrow. When consulting mirrors (except for those explicitly
listed on the left of the arrow, if mirror:// is used), the filename to the right of the arrow shall be
requested instead of the filename in the URL.

[SRC-URI-ARROWS

Chapter 9

Ebuild-defined Functions

9.1 List of Functions

The following is a list of functions that an ebuild, or eclass, may define, and which will be called
by the package manager as part of the build and/or install process. In all cases the package manager
must provide a default implementation of these functions; unless otherwise stated this must be a no-
op. Most functions must assume only that they have write access to the package’s working directory
(the WORKDIR environment variable; see section 11.1), and the temporary directory T; exceptions are
noted below. All functions may assume that they have read access to all system libraries, binaries
and configuration files that are accessible to normal users.

The environment for functions run outside of the build sequence (that is, pkg_config, pkg_info,
pkg_prerm and pkg_postrm) must be the environment used for the build of the package, not the
current configuration.

Ebuilds must not call nor assume the existence of any phase functions.

9.1.1 Initial Working Directories

Some functions may assume that their initial working directory is set to a particular location; these
are noted below. If no initial working directory is mandated, it may be set to anything and the
ebuild must not rely upon a particular location for it. The ebuild may assume that the initial working
directory for any phase is a trusted location that may only be written to by a privileged user and
group.

Some functions are described as having an initial working directory of S with an error or fallback to
WORKDIR. For EAPIs listed in table 9.1 as having the fallback, this means that if S is not a directory
before the start of the phase function, the initial working directory shall be WORKDIR instead. For
EAPIs where it is a conditional error, if S is not a directory before the start of the phase function, it
is a fatal error, unless all of the following conditions are true, in which case the fallback to WORKDIR
is used:

e The A variable contains no items.

e The phase function in question is not in DEFINED_PHASES.

e None of the phase functions unpack, prepare, configure, compile or install, if sup-
ported by the EAPI in question and occurring prior to the phase about to be executed, are in
DEFINED_PHASES.

9.1.2 pkg pretend

The pkg_pretend function is only called for EAPIs listed in table 9.2 as supporting it.

38

’ S-WORKDIR-FALLBACK

PKG-PRETEND

CHAPTER 9. EBUILD-DEFINED FUNCTIONS 39

Table 9.1: EAPIs with S to WORKDIR fallbacks

EAPI Fallback to WORKDIR permitted?

Always
Always
Always
Always
Conditional error
Conditional error

a s WN - O

Table 9.2: EAPIs supporting pkg_pretend

EAPI Supports pkg_pretend?

s WN RO
Z
o

The pkg_pretend function may be used to carry out sanity checks early on in the install process.
For example, if an ebuild requires a particular kernel configuration, it may perform that check in
pkg_pretend and call eerror and then die with appropriate messages if the requirement is not
met.

pkg_pretend is run separately from the main phase function sequence, and does not participate in
any kind of environment saving. There is no guarantee that any of an ebuild’s dependencies will be
met at this stage, and no guarantee that the system state will not have changed substantially before
the next phase is executed.

pkg_pretend must not write to the filesystem.

9.1.3 pkg_setup

The pkg_setup function sets up the ebuild’s environment for all following functions, before the build
process starts. Further, it checks whether any necessary prerequisites not covered by the package
manager, e. g. that certain kernel configuration options are fulfilled.

pkg_setup must be run with full filesystem permissions, including the ability to add new users
and/or groups to the system.

9.1.4 src_unpack

The src_unpack function extracts all of the package’s sources. In EAPIs lacking src_prepare, it
may also apply patches and set up the package’s build system for further use.

The initial working directory must be WORKDIR, and the default implementation used when the ebuild
lacks the src_unpack function shall behave as:

src_unpack() {
if [[-n ${A} 11; then
unpack ${A}
fi

SRC-UNPACK

CHAPTER 9. EBUILD-DEFINED FUNCTIONS 40

Table 9.3: EAPIs supporting src_prepare

EAPI Supports src_prepare?

No
No
Yes
Yes
Yes
Yes

O d WwWN - O

Table 9.4: EAPIs supporting src_configure

EAPI Supports src_configure?

No
No
Yes
Yes
Yes
Yes

ad WN - O

9.1.5 src_prepare

The src_prepare function is only called for EAPIs listed in table 9.3 as supporting it.

The src_prepare function can be used for post-unpack source preparation. The default implemen-
tation does nothing.

The initial working directory is S, with an error or fallback to WORKDIR as discussed in section 9.1.1.

9.1.6 src_configure

The src_configure function is only called for EAPIs listed in table 9.4 as supporting it.
The initial working directory is S, with an error or fallback to WORKDIR as discussed in section 9.1.1.

The src_configure function configures the package’s build environment. The default implemen-
tation used when the ebuild lacks the src_configure function shall behave as:

src_configure() {
if [[-x ${ECONF_SOURCE:-.}/configure]]; then
econf
fi

9.1.7 src_compile

The src_compile function configures the package’s build environment in EAPIs lacking src_
configure, and builds the package in all EAPIs.

The initial working directory is S, with an error or fallback to WORKDIR as discussed in section 9.1.1.

For EAPIs listed in table 9.5 as using format 0, the default implementation used when the ebuild
lacks the src_compile function shall behave as:

src_compile() {
if [[-x ./configure]]; then
econf
fi

SRC-PREPARE

| SRC-CONFIGURE

SRC-COMPILE

| SRC-COMPILE-0 |

CHAPTER 9. EBUILD-DEFINED FUNCTIONS 41

Table 9.5: src_compile behaviour for EAPIs

EAPI Format
0

O d WN - O
NS (S (ST S

if [[-f Makefile 1] || [[-f GNUmakefile 1] || [[-f makefile]]; then
emake || die "emake failed"
fi
}

For EAPIs listed in table 9.5 as using format 1, the default implementation used when the ebuild
lacks the src_compile function shall behave as:

src_compile() {
if [[-x ${ECONF_SOURCE:-.}/configure]]; then

econf

fi

if [[-f Makefile 1] || [[-f GNUmakefile 1] || [[-f makefile 1]; then
emake || die "emake failed"

fi

}

For EAPIs listed in table 9.5 as using format 2, the default implementation used when the ebuild
lacks the src_compile function shall behave as:

src_compile() {
if [[-f Makefile 1] || [[-f GNUmakefile 1] || [[-f makefile]]; then
emake || die "emake failed"
fi

9.1.8 src_test

The src_test function runs unit tests for the newly built but not yet installed package as provided.

The initial working directory must be S if that exists, falling back to WORKDIR otherwise. The default
implementation used when the ebuild lacks the src_test function must, if tests are enabled, run
emake check if and only if such a target is available, or if not run emake test if and only if such
a target is available. In both cases, if emake returns non-zero the build must be aborted.

For EAPIs listed in table 9.6 as not supporting parallel tests, the emake command must be called
with option -j1.

The src_test function may be disabled by RESTRICT. See section 8.2.8. It may be disabled by user
too, using a PM-specific mechanism.

9.1.9 src_install

The src_install function installs the package’s content to a directory specified in D.
The initial working directory is S, with an error or fallback to WORKDIR as discussed in section 9.1.1.

For EAPIs listed in table 9.7 as using format 4, the default implementation used when the ebuild
lacks the src_install function shall behave as:

SRC-COMPILE-1

SRC-COMPILE-2

’ PARALLEL-TESTS

SRC-INSTALL

| SRC-INSTALL-4 |

CHAPTER 9. EBUILD-DEFINED FUNCTIONS 42

Table 9.6: src_test behaviour for EAPIs

EAPI Supports parallel tests?

gas WwN RO
Z
o

Table 9.7: src_install behaviour for EAPIs

EAPI Format

0 no-op
1 no-op
2 no-op
3 no-op
4 4
5 4
src_install() {
if [[-f Makefile 11 || [[-f GNUmakefile 11 || [[-f makefile]]; then
emake DESTDIR="${D}" install

fi

if ! declare -p DOCS >/dev/null 2>&1 ; then
local d
for d in README* ChangeLog AUTHORS NEWS TODO CHANGES \

THANKS BUGS FAQ CREDITS CHANGELOG ; do
[[-s "${a}" 1] && dodoc "${d}"

done

elif declare -p DOCS | grep -q ’~declare -a ’> ; then
dodoc "${DOCS[@]}"

else
dodoc ${D0OCS}

fi

}

For other EAPIs, the default implementation used when the ebuild lacks the src_install function
is a no-op.

9.1.10 pkg_preinst

The pkg_preinst function performs any special tasks that are required immediately before merging
the package to the live filesystem. It must not write outside of the directories specified by the ROOT
and D environment variables.

pkg_preinst must be run with full access to all files and directories below that specified by the
ROOT and D environment variables.

9.1.11 pkg_postinst

The pkg_postinst function performs any special tasks that are required immediately after merging
the package to the live filesystem. It must not write outside of the directory specified in the ROOT
environment variable.

CHAPTER 9. EBUILD-DEFINED FUNCTIONS 43

Table 9.8: EAPIs supporting pkg_info on non-installed packages

EAPI Supports pkg_info on non-installed packages?

o WwN RO
Z
o

pkg_postinst, like, pkg_preinst, must be run with full access to all files and directories below
that specified by the ROOT environment variable.

9.1.12 pkg_prerm

The pkg_prerm function performs any special tasks that are required immediately before unmerging
the package from the live filesystem. It must not write outside of the directory specified by the ROOT
environment variable.

pkg_prerm must be run with full access to all files and directories below that specified by the ROOT
environment variable.

9.1.13 pkg_postrm

The pkg_postrm function performs any special tasks that are required immediately after unmerging
the package from the live filesystem. It must not write outside of the directory specified by the ROOT
environment variable.

pkg_postrm must be run with full access to all files and directories below that specified by the ROOT
environment variable.

9.1.14 pkg_config

The pkg_config function performs any custom steps required to configure a package after it has
been fully installed. It is the only ebuild function which may be interactive and prompt for user
input.

pkg_config must be run with full access to all files and directories inside of ROOT.

9.1.15 pkg_info

The pkg_info function may be called by the package manager when displaying information about an
installed package. In EAPIs listed in table 9.8 as supporting pkg_info on non-installed packages,
it may also be called by the package manager when displaying information about a non-installed
package. In this case, ebuild authors should note that dependencies may not be installed.

pkg_info must not write to the filesystem.

9.1.16 pkg nofetch

The pkg_nofetch function is run when the fetch phase of an fetch-restricted ebuild is run, and the
relevant source files are not available. It should direct the user to download all relevant source files
from their respective locations, with notes concerning licensing if applicable.

pkg_nofetch must require no write access to any part of the filesystem.

PKG-INFO

CHAPTER 9. EBUILD-DEFINED FUNCTIONS 44

Table 9.9: EAPIs supporting default_ phase functions

EAPI Supports default_ functions in phases

0 None

1 None

2 pkg_nofetch, src_unpack, src_prepare, src_configure
src_compile, src_test

3 pkg_nofetch, src_unpack, src_prepare, src_configure,
src_compile, src_test

4 pkg_nofetch, src_unpack, src_prepare, src_configure,
src_compile, src_install, src_test

5 pkg_nofetch, src_unpack, src_prepare, src_configure

src_compile, src_install, src_test

9.1.17 default_ Phase Functions

In EAPIs listed in table 9.9 as supporting default_ phase functions, a function named default_
(phase) that behaves as the default implementation for that EAPI shall be defined when executing
any ebuild phase listed in the table. Ebuilds must not call these functions except when in the phase
in question.

9.2

Call Order

The call order for installing a package is:

pkg_pretend (only for EAPIs listed in table 9.2), which is called outside of the normal call
order process.

pkg_setup

src_unpack

src_prepare (only for EAPIs listed in table 9.3)
src_configure (only for EAPIs listed in table 9.4)
src_compile

src_test (except if RESTRICT=test or disabled by user)
src_install

pkg_preinst

pkg_postinst

The call order for uninstalling a package is:

pkg_prerm
pkg_postrm

The call order for upgrading, downgrading or reinstalling a package is:

pkg_pretend (only for EAPIs listed in table 9.2), which is called outside of the normal call
order process.

pkg_setup

src_unpack

src_prepare (only for EAPIs listed in table 9.3)
src_configure (only for EAPISs listed in table 9.4)
src_compile

src_test (except if RESTRICT=test)
src_install

pkg_preinst

pkg_prerm for the package being replaced
pkg_postrm for the package being replaced
pkg_postinst

’ DEFAULT-PHASE-FUNCS

CHAPTER 9. EBUILD-DEFINED FUNCTIONS 45

Note: When up- or downgrading a package in EAPI 0 or 1, the last four phase functions can al-
ternatively be called in the order pkg_preinst, pkg_postinst, pkg_prerm, pkg_postrm. This
behaviour is deprecated.

The pkg_config, pkg_info and pkg_nofetch functions are not called in a normal sequence. The
pkg_pretend function is called some unspecified time before a (possibly hypothetical) normal se-
quence.

For installing binary packages, the src phases are not called.

When building binary packages that are not to be installed locally, the pkg_preinst and pkg_
postinst functions are not called.

Chapter 10

Eclasses

Eclasses serve to store common code that is used by more than one ebuild, which greatly aids main-
tainability and reduces the tree size. However, due to metadata cache issues, care must be taken in
their use. In format they are similar to an ebuild, and indeed are sourced as part of any ebuild using
them. The interpreter is therefore the same, and the same requirements for being parseable hold.

Eclasses must be located in the eclass directory in the top level of the repository—see section 4.6.
Each eclass is a single file named <name>.eclass, where <name> is the name of this eclass, used
by inherit and EXPORT_FUNCTIONS among other places.

10.1 The inherit command

An ebuild wishing to make use of an eclass does so by using the inherit command in global scope.
This will cause the eclass to be sourced as part of the ebuild—any function or variable definitions
in the eclass will appear as part of the ebuild, with exceptions for certain metadata variables, as
described below.

The inherit command takes one or more parameters, which must be the names of eclasses (exclud-
ing the . eclass suffix and the path). For each parameter, in order, the named eclass is sourced.

Eclasses may end up being sourced multiple times.
The inherit command must also ensure that:

e The ECLASS variable is set to the name of the current eclass, when sourcing that eclass.
e Once all inheriting has been done, the INHERITED metadata variable contains the name of
every eclass used, separated by whitespace.

10.2 Eclass-defined Metadata Keys

The IUSE, REQUIRED_USE, DEPEND, RDEPEND and PDEPEND variables are handled specially when
set by an eclass. They must be accumulated across eclasses, appending the value set by each eclass
to the resulting value after the previous one is loaded. Then the eclass-defined value is appended to
that defined by the ebuild. In the case of RDEPEND, this is done after the implicit RDEPEND rules in
section 7.3.3 are applied.

10.3 EXPORT_FUNCTIONS

There is one command available in the eclass environment that is neither available nor meaningful
in ebuilds—EXPORT_FUNCTIONS. This can be used to alias ebuild phase functions from the eclass so

46

CHAPTER 10. ECLASSES 47

Listing 10.1: EXPORT_FUNCTIONS example: foo.eclass

foo_src_compile()

{
econf --enable-gerbil \
$(use_enable fnord)
emake gerbil || die "Couldn’t make a gerbil"
emake || die "emake failed"
}

EXPORT_FUNCTIONS src_compile

that an ebuild inherits a default definition whilst retaining the ability to override and call the eclass-
defined version from it. The use of it is best illustrated by an example; this is given in listing 10.1
and is a snippet from a hypothetical foo.eclass.

This example defines an eclass src_compile function and uses EXPORT_FUNCTIONS to alias it.
Then any ebuild that inherits foo.eclass will have a default src_compile defined, but should the
author wish to override it he can access the function in foo.eclass by calling foo_src_compile.

EXPORT_FUNCTIONS must only be used on ebuild phase functions. The function that is aliased must
be named eclassname_phasefunctionname, where eclassname is the name of the eclass.

Chapter 11

The Ebuild Environment

11.1 Defined Variables

The package manager must define the following environment variables. Not all variables are mean-
ingful in all phases; variables that are not meaningful in a given phase may be unset or set to any
value. Ebuilds must not attempt to modify any of these variables, unless otherwise specified.

Because of their special meanings, these variables may not be preserved consistently across all phases
as would normally happen due to environment saving (see 11.2). For example, EBUILD_PHASE is
different for every phase, and ROOT may have changed between the various different pkg_* phases.
Ebuilds must recalculate any variable they derive from an inconsistent variable.

48

*STY) punote yJom sny) ysnw syduos 2anIyuod yons Surf[ed sp[inga a3exoed qrTee
ay) puy 03 dA[QeLIeA STY) osn s3d1IOs 2INTYU0d MY e “dpdurexe 1o I Suntoddns SITVH oY) UI I1 539 JeSeurwr oFesord Ay} By AWNSSE NS IS SPINGD TOAIMOH "PajeddIdop paropIsuod AJ[eIouds ST A[QELIeA ST,
(¥t 99s) paepdn uaaq sey a3esoed € g1 oFueyd Ke]y |

D
A

¥y Sunioddns se ¢' [9[qe) ur pAIsI[SIIVH
10J A[uQ "9[qeLIBA BIEPEIOW P[INGd YN DUS oY)
JO JUQWIO[® UOBY JO SQWRU Iseq dY) WOIJ Paje|
-no[ed SI dN[eA JYJ, "S[EUONIPUOD FS() JO sned
-9q ¥ ur pajqesip a1e jeyy Aue Jurpnpour ‘oFexoed
oy I0J 9[qe[TeAe 2q P[NOd IBY} SI[Y 92INOS [V SOX *DIS Al (Vv]
“9[qeLIBA BJEpERIOW
PIING2 THN™DUS Y} JO JUSWI[A OB JO SOUWIBU 3Skq
JU} WO} PaJe[no[ed SI AN[BA Y], ‘S[EUONIPUOD
gS) JO 9sneddq pa[qesIp Ik Jey) Aue apnjoul jou
S90(] "THN~DYS Jo 1usuodwod payorew & ur siead
-de 11 WO Y YOIYM UT I9PIO Y} UT pue ‘aoed
-sa)ym Jurres) 10 3uiped] ou Yim pajeredas aoed

W -sayym ‘a3exoed oY) 10} 9[qe[IBAR SA[Y 0INOS [[V SO 7 0IS v
m ‘TI-%.1°0° L-wrA ojdurexo

Z, I0J ‘(Aue JT) UOISIAQI PUB ‘UOISIOA ‘QuWeU 93eyoed SOx e Ad
m TI-FLT0°LIOPLTO"L

N ordwrexa 105 ‘(AUe JT) UOISIAQI pUE UOISIA 9Feyoed SOx e 9Ad
M *$JSIXQ QUOU JI 0I IO ‘UOISIAQI dFeyoRd SOX e ud
w YLT0TL

S ojdwrexe 10 °UOISIAQI OU IIM ‘UOISIOA aFeyoed SOX e Ad
@ ‘sz0qTpo-dde

o8 odwexs 10J ‘1039180 so3eyoed oyf, onip e A409ALVD
m ‘wra o[dwex9 10J ‘wreu a3eyord onip e Nd
- ‘H.T°0° L-wTa ‘Qdwexa 104 ‘yred

M UOISTAQI JU) JNOYIIM ‘UOISIOA PUB SWERU 9FeNoed [ON e d
m uondrsaq IUd)SISU0)) ul [e397] dqeLIBA

<

w So[qetrea paugad -['[1 S[98L

=
v

CHAPTER 11. THE EBUILD ENVIRONMENT

Juowaoedar oy

PUE [[BISUL 9Y} JOJ SIN[BA JUSIJJIP SARY JSOW S[qRLIEA SIY) “OFexoed e SUI[BISULL USYAL “[[BISUIUN PUE [[BISUL USIMISQ JOU Inq ‘saseyd [[e)surun Jo [[eIsur JO 90uanbas pajoauuod S[3uls & $s0I0e partdsdid pue JudsIsuo)),,

agexed Areurq e woxy Surpreisur udyM Juasdxd AJLressooou JON

‘PIqo 93

Kq osn 10} K1030011p Arerodwo) v 03 yied [ng oyJ,
"100¥d Sunioddns se 1 [9[qe) ul paIsi| SV 10)
ATUQ "9[qeLIRA XTI IAYJH 9Y) OS[E 39S "9OUSIUIAUOD
1oy /{XI49¥da}${/%1004}$ yred oy sureyuo)
"yse[s

Surren e ur pus pue Adwo-uou 9q Isnw 1004
"WAY) [10U ISNW SP[INGd 0S ‘QUIYORW P[INg 3Y)
U0 9[qeINOAXd 9q JOU [[IM L00Y JO OPISUI SoLIeU
-1q ‘yuowuoaIAud 3ur[Iduwod-sso1d ' Ul Jey) SI Jj0u
JO OS[Y °"100Y Ul UdAIS AI0JO21Ip 9y} JO 9pISINO
S9[J AU yonoj} Jou ISNU $S0J8 WISASIY [[NJ YIm
unI yorgm saseyq -posiouwr 9q o3 st aeyoed oy
[omym 0jul A1039211p J00I 3y} 0} yied 9njosqe oy,
‘101921

-1p sse[I9 s, A1031sodar 19)sewr oy 03 yied [[nJ YL,
"PaI0}S 9Ie J[qRLIBA ¥ I}

Ur S9[Y 9y} YOIym U A103011p 3y 03 yed [[ng oy,
‘K10

-0a11p 9seq s, A10y1sodar 19ysewr oy 03 yyed [Ny Sy,
*A1030211p JU)SIXd-uou & 03 syutod YTaSATIIA
Aroym uonemis ay} 1oy paredaid 9q isnw prnge
ue uay) uonsaenb ur afexoed oy} 10j so[y 1oddns
ou sopraoid K1oj1sodar e JT 3s1X0 JoU ABUI 0 ABA
“¢* UOTORS 99§ 'sayodjed 10 sory 11oddns [rewrs 103
pasn ‘A1030211p sy s, 93eyoed ay3 03 yyed [[nJ oy,

pAlrenreq

ON

ON
ON
ON

ON

ON

uondirsa(q

£IUR)SISU0))

v L

*~33d 10044
*x~83d 1004

onip YIASSVI0d

onip YIAISIA

onip ¥Ia1¥0d
m*|uhw HIASHTIA

uI 839 dIqeries

51

CHAPTER 11. THE EBUILD ENVIRONMENT

'S[IEI9p 10} ['[[UONI9S 99§ "PIIng SIY} 10}
s3ey SN AR [[JO ISI] pAtwI[op-aoedsajym v
*STUIY) S[[BISUL SUIOP AIYM UONEBIO[Y} S[ONU0D)
‘a4 Suntoddns se 11 9[qes ur paisI[SIgVH I0J
A[UQ -o[qelreA XIATHdH 9Y) OS[e 99§ QOUSIUIA
-u0d 10 /{XI4AYdI}${/%a}$ yed oY) sureyuo)
“yse[s Surfrex) e ur pus pue

Kydwa-uou 9q Isnjy "pasow uadq Isnf sey Jo 9q
0 Jn0qe st Jey) a3ewr oy 0} yied [[nJ 9y} surejuo))
‘ysers Surqren e ur pud pue Aydwa-uou

9q 1SN “pa[[eIsur 2q prnoys a5exoed oY) yorym
ojur A103001p aSewr ay) 01 yjed [[nJ oY} surejuo))
XIJ94dd

Sunioddns se 411 9[qel ut pasy SIdvVH 10} A[uO
"€'1°T1 OS[e 393G "100Y O3 UDYe ‘XIAAYJH USAIS dy)
I0J 1Inq st a3eyoed e ‘saninn Junsixe ay) Juisn
a1oym paurzoyrad st pring xyord-sso1d € JustIuoIIA
-uo FuI[[ed 9Y) UI 13S ST AN[BA UI-)[INQ 3Y) UBY) dN[EA
XIAFYdT JUQIQJIP € USUYAN ToSeuew a3eyoed ay)
Jo uone[esur Juumnp 39s sem Jey) xyaid-1osjjo ur
-)[INQ 9y} 0) SINeJop XIATYdH ‘JUSWUOIIAUS Sul
-[[ed 3y} Ul Jos jou ST XTIHYdH USUM "Uone[[els
-ut josgjo ue jo yyed xygoid-jasjjo pasiewIou YT,
*A103991Ip WOy Y} AJIpowl 10 peal Aewt

Jey) P[INGa Yy Aq pazoaut swerdord Aue £q asn 10J
K1030011p Arerodwe) ojeridoidde ue o3 yyed [[ny oy,
"9AOQE [, 99S ‘AT)0Ip SPINGa AqQ pasn 2q JOU ISNA]
‘pPIInge ue Aq payred suonedrdde Aue 10J ‘A1010911p
Areroduwio) 9[qesn € Jo UOT)EOO] AY) 0} 39S 9q ISNA

SOX
ON

(UEEN

SOX

ON

SOX

ong

ond

v

TTe1SuUI~2Is
asutasod~8yd
‘asutexd3yd
‘TTeasut oIs

asutasod~8xd
‘asutexd~3yd

1Te3SuUT oIS

v

v

v

asn
JIYLLSIASNI

ad

(panunuod) q

XIdd4dd

dWOH

YIAdWL

uondirsa(q

£IUR)SISU0))

uI 839

dlqerres

52

CHAPTER 11. THE EBUILD ENVIRONMENT

‘A[dde so[qe
-LIBA [8QO[3 JOJ 7' [UONIIS JO SUONILISAI) U}
‘pringa ue jo 2dods [eqo[3 oYy ur pausisse SI § J]
'SpIINQd Aq payrpour oq Ae|A "{d}$/{4IAHUOM}$
0] s)[nejo "9 TTeasur 2as ‘eTtdwoo oas Aq
pasn ‘A1030011p pling Arerodwa) ayj 03 yied [[ny oy,
"PaUTEIUOS 2q P[NOYS BIEP P[INq [[E YIIYMm
ur ‘A1030211p SupjIom s prmng? ay) o1 yed [0y oy,
"ONNA~ASYHA ™ a1Ingd Sunioddns
se 711 9[qe} ul paist] s|dvH 1o} A[uQ -sesodind
(VO 10 eyepejowl ‘3 9) 19Y30 J0J padInos Juraq SI
PIINGQ Y} UdYM JA0Qe Y} JO AUe JOU SI Jey) pIom
J[3uis Aue IO josun aq Ae]y ‘IoSeuew ogeyoed
oy Aq poINOIX2 Sem JBY) UONOUNJ PINgd [9AJ]
doy oy 03 Surpioooe pusgexd~3xd ‘ogutr~Ivd
‘wrysod™8yd ‘wxexd~8wd ‘asurysod~38yd
‘asutexd~8yd ‘ITe2SUI DIS ‘aseq”0as
‘ortdwoo~o1s ‘eandtyucdooixs ‘exedexd oas
‘yoedun~oas ‘yozeyou~3yd ‘dnyes~3yd
‘81yuoo~3xd sonea oY Jo QU0 sAYBL
‘sasodind (yQ) 1o eyepeiow ‘3 '9) I9YJO 10
Pa2In0s Furaq SI p[Inga Y} UaYm dA0qe Y} Jo Aue
JOou SI Jey) piom J[3uls Aue 10 jasun 9q AeJN “1o3e
-uew a3eyoed o) AQ pAINoAXa sem Jey) UOHOUNY
prnga [9a9] doj oy 03 Surprodoe pusqead ‘oFut
‘wrysod ‘wxeiad ‘qsurasod ‘gsutread ‘TTeasur
‘as91 ‘eTTdwod ‘@anltyuco ‘erxedsaxd ‘yoedun
‘oae you ‘dnjes ‘ST IUOD SANJRA 9} JO SUO SR,

SOX

SOX

ON

ON

x OIS
adoos [eqo[3
‘xT0oas

v

v

HYIANHOM

JONNA ASYHd a1INdd

dSVHd ™ Q1Ingd

ONNA-dSVHd-A1INngdd

uondirsa(q

£IUR)SISU0))

uI 839

dlqerres

53

CHAPTER 11. THE EBUILD ENVIRONMENT

‘NOISHIA™ A9~ @IOVIdIY
Sunaoddns se '] 9[qey ur pAasI| s|dvH 10} A[uQ
11T uonoas 29§ osimIdyio Jurns Aydwo ue
Jo ‘[eisur ue jo jed se poqeisurun Sureq ae
om J1 ‘sn Suroerdar st jey) (poyroads J1 ‘uorSIA
-a1 Surpnpour) ageyoed SIy} JO UOISIOA 9[3UIS Y],
"SNOISYIA DNIDVIdEY
Sunioddns se z'11 9[qel ut pasy s|dvd 10} A[uQ
“C’T'T] UONOIS 9§ ‘[[BISUL SIY) JO I[NSAI B SEB
(UNIMISAO IO pI[eisurun) paoderder Juraq ore
jeyy (poyroads J1 ‘uorsiaax Surpnpour) ogeyoed
SIY} JO SUOISIdA JO 3SI] pojeredos-ooedsaiym v
"AdALTADYAW Suntoddns se Z 1] 9[qel ur paisi|
SIdVA 10 A[uQ 31 Surpreisur Inoym ageyoed Areu
-1q & 3uip[inq j1 ATuopTtng pue ‘o3exoed Areu
-1q & 3ur[[eisur j1 £xeutq ‘90Inos woij oa3eyoed e
Surreisur pue SuIp[ing J1 ©0INOS 91k SAN[eA J[qIS
-s0d ‘paSiow 3ureq st ey a3eyored jo adAy ayjJ,
‘A Sunoddns se
€11 2Iqe) Ut pASI] S[JVH 10J A[UQ Sp[Inga £q pay
-Ipow 9q ABJA "JUS[BAINDS IO pUBWIWIOD I- Sweun
oY) AQ pouInjaI Se ‘poINdSxXa ISIY Sem P[INge oY)
owir} 9y} Je [UISY SuIUUNI JY) JO UOISIOA Y,

SOX

SOX

ON

SOX

wrqsod~8yd
‘wxexd~3xd

(3x91 995) %~ 3xd

*~8yd

v

NOISHAA™ A9~ QIOVIdAY

SNOISHAA DNIDVIdHY

HdAL ADHAN

A

uondirsa(q

£IUR)SISU0))

uI 839

dlqerres

HdAL-dDYdN

(o]

CHAPTER 11. THE EBUILD ENVIRONMENT 54

Table 11.2: EAPIs supporting various added env variables

EAPI MERGE_TYPE? REPLACING_VERSIONS? REPLACED_BY_VERSION? EBUILD_PHASE_FUNC?

0 No No No No
1 No No No No
2 No No No No
3 No No No No
4 Yes Yes Yes No
5 Yes Yes Yes Yes

Table 11.3: EAPIs supporting various removed env variables

EAPI AA? KV?

0 Yes Yes
1 Yes Yes
2 Yes Yes
3 Yes Yes
4 No No
5 No No

Except where otherwise noted, all variables set in the active profiles’ make.defaults files must
be exported to the ebuild environment. CHOST, CBUILD and CTARGET, if not set by profiles, must
contain either an appropriate machine tuple (the definition of appropriate is beyond the scope of this
specification) or be unset.

PATH must be initialized by the package manager to a “usable” default. The exact value here is left
up to interpretation, but it should include the equivalent “sbin” and “bin” and any package manager
specific directories.

GZIP, BZIP, BZIP2, CDPATH, GREP_OPTIONS, GREP_COLOR and GLOBIGNORE must not be set.

11.1.1 USE and IUSE Handling

This section discusses the handling of four variables:
IUSE is the variable calculated from the TUSE values defined in ebuilds and eclasses.

IUSE_REFERENCEABLE is a variable calculated from IUSE and a variety of other sources de-
scribed below. It is purely a conceptual variable; it is not exported to the ebuild environment.
Values in TUSE_REFERENCEABLE may legally be used in queries from other packages about an
ebuild’s state (for example, for use dependencies).

IUSE_EFFECTIVE is another conceptual, unexported variable. Values in ITUSE_EFFECTIVE are
those which an ebuild may legally use in queries about itself (for example, for the use function,
and for use in dependency specification conditional blocks).

Table 11.4: EAPIs supporting offset-prefix env variables

EAPI EPREFIX? EROOT? ED?

0 No No No
1 No No No
2 No No No
3 Yes Yes Yes
4 Yes Yes Yes
5 Yes Yes Yes

CHAPTER 11. THE EBUILD ENVIRONMENT 55

USE is a variable calculated by the package manager and exported to the ebuild environment.

In all cases, the values of ITUSE_REFERENCEABLE and IUSE_EFFECTIVE are undefined during meta-
data generation.

For EAPIs listed in table 5.2 as not supporting profile defined TUSE injection, ITUSE_REFERENCEABLE
is equal to the calculated IUSE value. For EAPIs where profile defined TUSE injection is supported,
IUSE_REFERENCEABLE is equal to IUSE_EFFECTIVE.

For EAPIs listed in table 5.2 as not supporting profile defined IUSE injection, IUSE_EFFECTIVE
contains the following values:

o All values in the calculated IUSE value.

o All possible values for the ARCH variable.

o All legal use flag names whose name starts with the lowercase equivalent of any value in the
profile USE_EXPAND variable followed by an underscore.

For EAPIs listed in table 5.2 as supporting profile defined IUSE injection, IUSE_EFFECTIVE contains
the following values:

o All values in the calculated IUSE value.

o All values in the profile TUSE_IMPLICIT variable.

o All values in the profile variable named USE_EXPAND_VALUES_${v}, where ${v} is any value
in the intersection of the profile USE_EXPAND_UNPREFIXED and USE_EXPAND_IMPLICIT vari-
ables.

o All values for ${1lower_v}_${x}, where ${x} is all values in the profile variable named USE_
EXPAND_VALUES_${v}, where ${v} is any value in the intersection of the profile USE_EXPAND
and USE_EXPAND_IMPLICIT variables and ${lower_v} is the lowercase equivalent of ${v}.

The USE variable is set by the package manager. For each value in IUSE_EFFECTIVE, USE shall
contain that value if the flag is to be enabled for the ebuild in question, and shall not contain that
value if it is to be disabled. In EAPIs listed in table 5.2 as not supporting profile defined IUSE
injection, USE may contain other flag names that are not relevant for the ebuild.

For EAPIs listed in table 5.2 as supporting profile defined IUSE injection, the variables named in
USE_EXPAND and USE_EXPAND_UNPREFIXED shall have their profile-provided values reduced to con-
tain only those values that are present in IUSE_EFFECTIVE.

For EAPIs listed in table 5.2 as supporting profile defined IUSE injection, the package manager must
save the calculated value of TUSE_EFFECTIVE when installing a package. Details are beyond the
scope of this specification.

11.1.2 REPLACING_VERSIONS and REPLACED_BY_VERSION

In EAPIs listed in table 11.2 as supporting it, the REPLACING_VERSIONS variable shall be defined in
pkg_preinst and pkg_postinst. In addition, it may be defined in pkg_pretend and pkg_setup,
although ebuild authors should take care to handle binary package creation and installation correctly
when using it in these phases.

REPLACING_VERSIONS is a list, not a single optional value, to handle pathological cases such as
installing foo-2:2 to replace foo-2:1 and foo-3:2.

In EAPIs listed in table 11.2 as supporting it, the REPLACED_BY_VERSION variable shall be defined
in pkg_prerm and pkg_postrm. It shall contain at most one value.

11.1.3 Offset-prefix variables EPREFIX, EROOT and ED

Table 11.5 lists the EAPIs which support offset-prefix installations. This support was initially added
in EAPI 3, in the form of three extra variables. Two of these, EROOT and ED, are convenience
variables using the variable EPREFIX. In EAPIs that do not support an offset-prefix, the installa-
tion offset is hardwired to /usr. In offset-prefix supporting EAPIs the installation offset is set as
${EPREFIX}/usr and hence can be adjusted using the variable EPREFIX. Note that the behaviour of

’ PROFILE-TUSE-INJECT

’ REPLACE-VERSION-VARS

| OFFSET-PREFIX-VARS

CHAPTER 11. THE EBUILD ENVIRONMENT 56

Table 11.5: EAPIs supporting offset-prefix

EAPI Supports offset-prefix?

0 No
1 No
2 No
3 Yes
4 Yes
5 Yes

offset-prefix aware and agnostic is the same when EPREFIX is set to the empty string in offset-prefix
aware EAPIs. The latter do have the variables ED and EROOT properly set, though.

11.2 The state of variables between functions

Exported and default scope variables are saved between functions. A non-local variable set in a
function earlier in the call sequence must have its value preserved for later functions, including
functions executed as part of a later uninstall.

Note: pkg_pretend is not part of the normal call sequence, and does not take part in environment
saving.

Variables that were exported must remain exported in later functions; variables with default visibility
may retain default visibility or be exported.

Variables with special meanings to the package manager are excluded from this rule.

Global variables must only contain invariant values (see 7.1). If a global variable’s value is invariant,
it may have the value that would be generated at any given point in the build sequence.

This is demonstrated by code listing 11.1.

11.3 Available commands

This section documents the commands available to an ebuild. Unless otherwise specified, they may
be aliases, shell functions, or executables in the ebuild’s PATH.

When an ebuild is being sourced for metadata querying rather than for a build (that is to say, when
none of the src_ or pkg_ functions are to be called), no external command may be executed. The
package manager may take steps to enforce this.

11.3.1 System commands

Any ebuild not listed in the system set for the active profile(s) may assume the presence of every
command that is always provided by the system set for that profile. However, it must target the
lowest common denominator of all systems on which it might be installed—in most cases this means
that the only packages that can be assumed to be present are those listed in the base profile or
equivalent, which is inherited by all available profiles. If an ebuild requires any applications not
provided by the system profile, or that are provided conditionally based on USE flags, appropriate
dependencies must be used to ensure their presence.

CHAPTER 11. THE EBUILD ENVIRONMENT 57

Listing 11.1: Environment state between functions

GLOBAL_VARIABLE="a"

src_compile()

{
GLOBAL_VARIABLE="Db"
DEFAULT_VARIABLE="c"
export EXPORTED_VARIABLE="d4d"
local LOCAL_VARIABLE="e"

}

src_install () {
[[${GLOBAL_VARIABLE} == "a" 11 \
| [[${GLOBAL_VARIABLE} == "b"]] \
|| die "broken env saving for globals"

[[${DEFAULT_VARIABLE} == "c" 1] \
|| die "broken env saving for default"

[[${EXPORTED_VARIABLE} == "d" 11 \
|| die "broken env saving for exported"

[[$(printenv EXPORTED_VARIABLE) == "d"]] \
|| die "broken env saving for exported"

[[-z ${LOCAL_VARIABLE} 1] \
|| die "broken env saving for locals"

Table 11.6: £ind implementation for EAPIs

EAPI GNU £ind?

Undefined
Undefined
Undefined
Undefined
Undefined
Yes

O WN = O

11.3.1.1 Guaranteed system commands

The following commands must always be available in the ebuild environment:

e All builtin commands in GNU bash, version 3.2°.

e sed must be available, and must support all forms of invocations valid for GNU sed version 4
or later.

e patch must be available, and must support all inputs valid for GNU patch.

e find and xargs must be available, and must support all forms of invocations valid for GNU
findutils version 4.4 or later. Only for EAPIs listed in table 11.6 as requiring GNU find.

11.3.2 Commands provided by package dependencies

In some cases a package’s build process will require the availability of executables not provided by
the core system, a common example being autotools. The availability of commands provided by the

3The required bash version was retroactively updated from 3.0 to 3.2 in November 2009 (see http: //www.gentoo.org/
proj/en/council/meeting-1logs/20091109.txt).

GNU-FIND

http://www.gentoo.org/proj/en/council/meeting-logs/20091109.txt
http://www.gentoo.org/proj/en/council/meeting-logs/20091109.txt

CHAPTER 11. THE EBUILD ENVIRONMENT 58

Table 11.7: EAPI Command Failure Behaviour

EAPI Command failure behaviour Supports nonfatal?

0 Non-zero exit No
1 Non-zero exit No
2 Non-zero exit No
3 Non-zero exit No
4 Aborts Yes
5 Aborts Yes

Table 11.8: Banned commands

EAPI Command banned?
dohard dosed

0 No No
1 No No
2 No No
3 No No
4 Yes Yes
5 Yes Yes

particular types of dependencies is explained in section 8.1.

11.3.3 Ebuild-specific Commands

The following commands will always be available in the ebuild environment, provided by the pack-
age manager. Except where otherwise noted, they may be internal (shell functions or aliases) or
external commands available in PATH; where this is not specified, ebuilds may not rely upon either
behaviour.

Unless otherwise noted, any output of these commands ends with a newline.

11.3.3.1 Failure behaviour and related commands

Where a command is listed as having EAPI dependent failure behaviour, a failure shall either result
in a non-zero exit status or abort the build process, as determined by table 11.7.

The following commands affect this behaviour:

nonfatal Executes the remainder of its arguments as a command, preserving the exit status. If this
results in a command being called that would normally abort the build process due to a failure
(but not due to an explicit die or assert call), instead a non-zero exit status shall be returned.
Only in EAPISs listed in table 11.7 as supporting nonfatal.

11.3.3.2 Banned commands

Some commands are banned in some EAPIs. If a banned command is called, the package manager
must abort the build process indicating an error.

11.3.3.3 Sandbox commands

These commands affect the behaviour of the sandbox. Each command takes a single directory as
argument. Ebuilds must not run any of these commands once the current phase function has returned.

addread Add a directory to the permitted read list.

| DIE-ON-FAILURE

NONFATAL

[BANNED-COMMANDS

CHAPTER 11. THE EBUILD ENVIRONMENT 59

addwrite Add a directory to the permitted write list.

addpredict Add a directory to the predict list. Any write to a location in this list will be denied, but
will not trigger access violation messages or abort the build process.

adddeny Add a directory to the deny list.

11.3.3.4 Package manager query commands

These commands are used to extract information about the system. Ebuilds must not run any of these
commands in parallel with any other package manager command. Ebuilds must not run any of these
commands once the current phase function has returned.

In EAPIs listed in table 11.15 as supporting option --host-root, this flag as the first argument will
cause the query to apply to the host root instead of ROOT.

has_version Takes exactly one package dependency specification as an argument. Returns true if a
package matching the atom is installed in ROOT, and false otherwise.

best_version Takes exactly one package dependency specification as an argument. If a matching
package is installed, prints the category, package name and version of the highest matching
version; otherwise, prints an empty string. The exit code is unspecified.

11.3.3.5 Output commands

These commands display messages to the user. Unless otherwise stated, the entire argument list is
used as a message, with backslash-escaped characters interpreted as for the echo -e command of
bash, notably \t for a horizontal tab, \n for a new line, and \\ for a literal backslash. Ebuilds must
not run any of these commands once the current phase function has returned. Unless otherwise noted,
output may be sent to stdout, stderr or some other appropriate facility.

einfo Displays an informational message.
einfon Displays an informational message without a trailing newline.

elog Displays an informational message of slightly higher importance. The package manager may
choose to log elog messages by default where einfo messages are not, for example.

ewarn Displays a warning message. Must not go to stdout.
eerror Displays an error message. Must not go to stdout.

ebegin Displays an informational message. Should be used when beginning a possibly lengthy
process, and followed by a call to eend.

eend Indicates that the process begun with an ebegin message has completed. Takes one fixed ar-
gument, which is a numeric return code, and an optional message in all subsequent arguments.
If the first argument is 0, prints a success indicator; otherwise, prints the message followed by
a failure indicator. Returns its first argument as exit status.

11.3.3.6 Error commands
These commands are used when an error is detected that will prevent the build process from com-
pleting. Ebuilds must not run any of these commands once the current phase function has returned.

die Displays a failure message provided in its first and only argument, and then aborts the build
process. die is not guaranteed to work correctly if called from a subshell environment.

assert Checks the value of the shell’s pipe status variable, and if any component is non-zero (indi-
cating failure), calls die with its first argument as a failure message.

[HOST-ROOT-OPTION

CHAPTER 11. THE EBUILD ENVIRONMENT 60

Table 11.9: Extra econf arguments for EAPIs

EAPI --disable-dependency-tracking? --disable-silent-rules?

0 No No
1 No No
2 No No
3 No No
4 Yes No
5 Yes Yes

11.3.3.7 Build commands

These commands are used during the src_compile and src_install phases to run the package’s
build commands. Ebuilds must not run any of these commands once the current phase function has
returned.

econf Calls the program’s ./configure script. This is designed to work with GNU Autoconf-
generated scripts. Any additional parameters passed to econf are passed directly to
./configure. econf will look in the current working directory for a configure script unless
the ECONF_SOURCE environment variable is set, in which case it is taken to be the directory
containing it. econf must pass the following options to the configure script:

e --prefix must default to ${EPREFIX}/usr unless overridden by econf’s caller.
e --mandir must be ${EPREFIX}/usr/share/man

e —-infodir must be ${EPREFIX}/usr/share/info

e --datadir must be ${EPREFIX}/usr/share

e --sysconfdir must be ${EPREFIX}/etc

e --localstatedir must be ${EPREFIX}/var/1ib

e --host must be the value of the CHOST environment variable.

e --libdir must be set according to Algorithm 9.

e --disable-dependency-tracking, if the EAPI is listed in table 11.9 as using it. This option
will only be passed if the string disable-dependency-tracking occurs in the output
of configure --help.

e --disable-silent-rules, if the EAPI is listed in table 11.9 as using it. This option will only
be passed if the string disable-silent-rules occurs in the output of configure
--help.

Note that the ${EPREFIX} component represents the same offset-prefix as described in Ta-
ble 11.1. It facilitates offset-prefix installations which is supported by EAPIs listed in Ta-
ble 11.4. When no offset-prefix installation is in effect, EPREFIX becomes the empty string,
making the behaviour of econf equal for both offset-prefix supporting and agnostic EAPIs.

econf must be implemented internally—that is, as a bash function and not an external script.
Should any portion of it fail, it must abort the build using die, unless run using nonfatal, in
which case it must return non-zero exit status.

emake Calls the $MAKE program, or GNU make if the MAKE variable is unset. Any arguments given
are passed directly to the make command, as are the user’s chosen MAKEOPTS. Arguments
given to emake override user configuration. See also section 11.3.1.1. emake must be an
external program and cannot be a function or alias—it must be callable from e.g. xargs.
Failure behaviour is EAPI dependent as per section 11.3.3.1.

| ECONF-OPTIONS

CHAPTER 11. THE EBUILD ENVIRONMENT 61

Algorithm 9 econf --libdir logic

let prefix=$ { EPREFIX }/usr
if the caller specified --prefix=$p then
let prefix=$p
end if
let libdir=
if the ABI environment variable is set then
let libvar=LIBDIR _$ABI
if the environment variable named by libvar is set then
let libdir=the value of the variable named by libvar
end if
. end if
: if libdir is non-empty then
pass --libdir=$prefix/$libdir to configure
. end if

R A A S ol S

GG VY

einstall A shortcut for the command given in Listing 11.2. Any arguments given to einstall
are passed verbatim to emake, as shown. Failure behaviour is EAPI dependent as per sec-
tion 11.3.3.1.

The variable ED is defined as in Table 11.1 and depends on the use of an offset-prefix. When
such offset-prefix is absent, ED is equivalent to D. ED is always available in EAPIs that support
offset-prefix installations as listed in Table 11.4, hence EAPIs lacking offset-prefix support
should use D instead of ED in the command given in Listing 11.2. Variable 1ibdir is an
auxiliary local variable whose value is determined by Algorithm 10.

Listing 11.2: einstall command

emake \
prefix="${ED}"/usr \
datadir="${ED}"/usr/share \
mandir="${ED}"/usr/share/man \
infodir="${ED}"/usr/share/info \
libdir="${ED}"/usr/${libdir} \
localstatedir="${ED}"/var/1lib \
sysconfdir="${ED}"/etc \
-31\
"$Q" \

install

11.3.3.8 Installation commands

These commands are used to install files into the staging area, in cases where the package’s make
install target cannot be used or does not install all needed files. Except where otherwise stated,
all filenames created or modified are relative to the staging directory including the offset-prefix ED
in offset-prefix aware EAPIs, or just the staging directory D in offset-prefix agnostic EAPIs. These
commands must all be external programs and not bash functions or aliases—that is, they must be
callable from xargs. Ebuilds must not run any of these commands once the current phase function
has returned.

dobin Installs the given files into DESTTREE/bin, where DESTTREE defaults to /usr. Gives the
files mode 0755 and transfers file ownership to the superuser or its equivalent on the system
or installation at hand. For instance on Gentoo Linux in a non-offset-prefix installation this
ownership is root : root, while on an offset-prefix aware installation this may be joe:users.
Failure behaviour is EAPI dependent as per section 11.3.3.1.

doconfd Installs the given config files into /etc/conf.d/, by default with file mode 0644. This

CHAPTER 11. THE EBUILD ENVIRONMENT 62

can be overridden by setting INSOPTIONS with the insopts function. Failure behaviour is
EAPI dependent as per section 11.3.3.1.

dodir Creates the given directories, by default with file mode 0755. This can be overridden by
setting DIROPTIONS with the diropts function. Failure behaviour is EAPI dependent as per
section 11.3.3.1.

dodoc Installs the given files into a subdirectory under /usr/share/doc/${PF}/ with file mode
0644. The subdirectory is set by the most recent call to docinto. If docinto has not yet
been called, instead installs to the directory /usr/share/doc/${PF}/. For EAPIs listed in
table 11.10 as supporting -, if the first argument is -r, any subsequent arguments that are
directories are installed recursively to the appropriate location; in any other case, it is an error
for a directory to be specified. Failure behaviour is EAPI dependent as per section 11.3.3.1.

doenvd Installs the given environment files into /etc/env.d/, by default with file mode 0644.
This can be overridden by setting INSOPTIONS with the insopts function. Failure behaviour
is EAPI dependent as per section 11.3.3.1.

doexe Installs the given files into the directory specified by the most recent exeinto call, by default
with file mode 0755. This can be overridden by setting EXEOPTIONS with the exeopts func-
tion. If exeinto has not yet been called, behaviour is undefined. Failure behaviour is EAPI
dependent as per section 11.3.3.1.

dohard Takes two parameters. Creates a hardlink from the second to the first. In EAPIs listed in
table 11.8, this command is banned as per section 11.3.3.2.

doheader Installs the given header files into /usr/include/, by default with file mode 0644. This
can be overridden by setting INSOPTIONS with the insopts function. If the first argument is
-r, then operates recursively, descending into any directories given. Only available in EAPIs
listed in table 11.11 as supporting doheader. Failure behaviour is EAPI dependent as per
section 11.3.3.1.

dohtml Installs the given HTML files into a subdirectory under /usr/share/doc/$PF/. The sub-
directory is html by default, but this can be overridden by setting the DOCDESTTREE variable
with the docinto function. Files to be installed automatically are determined by extension
and the default extensions are css, gif, htm, html, jpeg, jpg, js and png. These default
extensions can be extended or reduced (see below). The options that can be passed to dohtml
are as follows:

-r — enables recursion into directories.

-V — enables verbosity.

-A — adds file type extensions to the default list.

-a — sets file type extensions to only those specified.
-f — list of files that are able to be installed.

-x — list of directories that files will not be installed from (only used in conjunction with
-r).

-p — sets a document prefix for installed files, not to be confused with the global offset-
prefix.

Failure behaviour is EAPI dependent as per section 11.3.3.1.

It is undefined whether a failure shall occur if -r is not specified and a directory is encountered.
Ebuilds must not rely upon any particular behaviour.

doinfo Installs a GNU Info file into the /usr/share/info area with file mode 0644. Failure be-
haviour is EAPI dependent as per section 11.3.3.1.

doinitd Installs the given initscript files into /etc/init.d, by default with file mode 0755. This
can be overridden by setting EXEOPTIONS with the exeopts function. Failure behaviour is
EAPI dependent as per section 11.3.3.1.

DOHEADER

CHAPTER 11. THE EBUILD ENVIRONMENT 63

doins Takes any number of files as arguments and installs them into INSDESTTREE, by default with
file mode 0644. This can be overridden by setting INSOPTIONS with the insopts function.
If the first argument is -r, then operates recursively, descending into any directories given.
For EAPIs listed in table 11.12, doins must install symlinks as symlinks; for other EAPIs,
behaviour is undefined if any symlink is encountered. Failure behaviour is EAPI dependent as
per section 11.3.3.1.

dolib For each argument, installs it into the appropriate library subdirectory under DESTTREE, as
determined by Algorithm 10. The file mode is 0644 by default. This can be overridden by
setting LIBOPTIONS with the 1ibopts function. Any symlinks are installed into the same
directory as relative links to their original target. Failure behaviour is EAPI dependent as per
section 11.3.3.1.

dolib.so As for dolib except each file is installed with mode 0755.
dolib.a As for dolib except each file is installed with mode 0644.

Algorithm 10 Determining the library directory

1. if CONF_LIBDIR_OVERRIDE is set in the environment then
2 return CONF_LIBDIR_OVERRIDE

3: end if

4. if CONF_LIBDIR is set in the environment then

5. let LIBDIR_default=CONF_LIBDIR
6
7
8
9

. else
. let LIBDIR_default="1ib”
: end if
. if ABI is set in the environment then
10: let abi=ABI
11: else if DEFAULT_ABI is set in the environment then
12: let abi=DEFAULT_ABI
13: else
14: let abi="default”
15: end if
16: return the value of LIBDIR_S$abi

doman Installs a man page into the appropriate subdirectory of /usr/share/man depending upon
its apparent section suffix (e. g. foo. 1 goes to /usr/share/man/manl/foo. 1) with file mode
0644.

In EAPISs listed in table 11.13 as supporting language detection by filename, a man page with
name of the form foo.lang .1 shall go to /usr/share/man/lang/man1/foo.1, where lang
refers to a pair of lower-case ASCII letters optionally followed by an underscore and a pair of
upper-case ASCII letters. Failure behaviour is EAPI dependent as per section 11.3.3.1.

With option -i118n=lang, a man page shall be installed into an appropriate subdirectory of
/usr/share/man/lang (e.g. /usr/share/man/lang/manl/foo.pl.1 would be the desti-
nation for foo.pl.1). The lang subdirectory level is skipped if lang is the empty string. In
EAPIs specified by table 11.13, the -118n option takes precedence over the language code in
the filename.

domo Installs a .mo file with file mode 0644 into the appropriate subdirectory of DESTTREE/share/
locale, generated by taking the basename of the file, removing the . * suffix, and appending
/LC_MESSAGES. The name of the installed files is the package name with .mo appended. Fail-
ure behaviour is EAPI dependent as per section 11.3.3.1.

dosbin As dobin, but installs to DESTTREE/sbin.

dosym Creates a symbolic link named as for its second parameter, pointing to the first. If the direc-
tory containing the new link does not exist, creates it. Failure behaviour is EAPI dependent as
per section 11.3.3.1.

[DOMAN-LANGS

CHAPTER 11. THE EBUILD ENVIRONMENT 64

Table 11.10: EAPIs supporting dodoc -r

EAPI Supports dodoc -r?

O W N~ O
Z
o

Table 11.11: EAPIs supporting doheader and newheader

EAPI Supports doheader and newheader?

ad WwN RO
Z
o

fowners Acts as for chown, but takes paths relative to the image directory. Failure behaviour is
EAPI dependent as per section 11.3.3.1.

fperms Acts as for chmod, but takes paths relative to the image directory. Failure behaviour is EAPI
dependent as per section 11.3.3.1.

newbin As for dobin, but takes two parameters. The first is the file to install; the second is the new
filename under which it will be installed. In EAPIs specified by table 11.14, standard input is
read when the first parameter is - (a hyphen). In this case, it is an error if standard input is a
terminal.

newconfd As for doconfd, but takes two parameters as for newbin.
newdoc As above, for dodoc.
newenvd As above, for doenvd.
newexe As above, for doexe.
newheader As above, for doheader.
newinitd As above, for doinitd.
newins As above, for doins.
newlib.a As above, for dolib.a.
newlib.so As above, for dolib.so.
newman As above, for doman.
newsbin As above, for dosbin.

keepdir Creates a directory as for dodir, and an empty file whose name starts with .keep in that
directory to ensure that the directory does not get removed by the package manager should it
be empty at any point. Failure behaviour is EAPI dependent as per section 11.3.3.1.

11.3.3.9 Commands affecting install destinations

The following commands are used to set the various destination trees, all relative to ${ED?} in offset-
prefix aware EAPIs and relative to ${D} in offset-prefix agnostic EAPIs, used by the above installa-
tion commands. They must be shell functions or aliases, due to the need to set variables read by the

[NEWFOO-STDIN

CHAPTER 11. THE EBUILD ENVIRONMENT 65

Table 11.12: EAPIs supporting symlinks for doins

EAPI doins supports symlinks?

O WN RO
Z
o

Table 11.13: doman language support options for EAPIs

EAPI Language detection by filename? Option -i18n takes precedence?

0 No Not applicable
1 No Not applicable
2 Yes No
3 Yes No
4 Yes Yes
5 Yes Yes

Table 11.14: EAPIs supporting stdin for new* commands

EAPI new* can read from stdin?

No
No
No
No
No
Yes

O W~ O

Table 11.15: EAPIs supporting --host-root for *_version commands

EAPI *_version supports --host-root?

g WwWN PO
Z
o

CHAPTER 11. THE EBUILD ENVIRONMENT 66

above commands. Ebuilds must not run any of these commands once the current phase function has
returned.

into Sets the value of DESTTREE for future invocations of the above utilities. Creates the directory
under ${ED} in offset-prefix aware EAPIs or under ${D} in offset-prefix agnostic EAPISs, using
install -d with no additional options, if it does not already exist. Failure behaviour is EAPI
dependent as per section 11.3.3.1.

insinto Sets the value of INSDESTTREE for future invocations of the above utilities. May create the
directory, as specified for into.

exeinto Sets the install path for doexe and newexe. May create the directory, as specified for into.
docinto Sets the install subdirectory for dodoc et al. May create the directory, as specified for into.
insopts Sets the options passed by doins et al. to the install command.
diropts Sets the options passed by dodir et al. to the install command.
exeopts Sets the options passed by doexe et al. to the install command.

libopts Sets the options passed by dolib et al. to the install command.

11.3.3.10 Commands affecting install compression

In EAPIs listed in table 11.16 as supporting controllable compression, the package manager may
optionally compress a subset of the files under the ED directory in offset-prefix aware EAPIs or
the D directory in offset-prefix agnostic EAPIs. To control which directories may or may not be
compressed, the package manager shall maintain two lists:

e An inclusion list, which initially contains /usr/share/doc, /usr/share/info and
/usr/share/man.
e An exclusion list, which initially contains /usr/share/doc/${PF}/html.

The optional compression shall be carried out after src_install has completed, and before the
execution of any subsequent phase function. For each item in the inclusion list, pretend it has the
value of the ED variable in offset-prefix aware EAPIs or the D variable in offset-prefix agnostic EAPIs
prepended, then:

e If it is a directory, act as if every file or directory immediately under this directory were in the
inclusion list.

o If the item is a file, it may be compressed unless it has been excluded as described below.

o If the item does not exist, it is ignored.

Whether an item is to be excluded is determined as follows: For each item in the exclusion list,
pretend it has the value of the ED variable in offset-prefix aware EAPIs or the D variable in offset-
prefix agnostic EAPIs prepended, then:

e If it is a directory, act as if every file or directory immediately under this directory were in the
exclusion list.

e If the item is a file, it shall not be compressed.

o If the item does not exist, it is ignored.

The package manager shall take appropriate steps to ensure that its compression mechanisms behave
sensibly even if an item is listed in the inclusion list multiple times, if an item is a symlink, or if a
file is already compressed.

The following commands may be used in src_install to alter these lists. It is an error to call any
of these functions from any other phase.

docompress If the first argument is -x, add each of its subsequent arguments to the exclusion
list. Otherwise, add each argument to the inclusion list. Only available in EAPIs listed in
table 11.16 as supporting docompress.

DOCOMPRESS

CHAPTER 11. THE EBUILD ENVIRONMENT 67

Table 11.16: EAPIs supporting controllable compression

EAPI Supports controllable compression? Supports docompress?

0 No No
1 No No
2 No No
3 No No
4 Yes Yes
5 Yes Yes

Table 11.17: EAPI Behaviour for Use Queries not in IUSE_EFFECTIVE

EAPI Behaviour

Undefined
Undefined
Undefined
Undefined
Error
Error

ad N+~ O

11.3.3.11 Use List Functions

These functions provide behaviour based upon set or unset use flags. Ebuilds must not run any of
these commands once the current phase function has returned. Ebuilds must not run any of these
functions in global scope.

If any of these functions is called with a flag value that is not included in TUSE_EFFECTIVE, either
behaviour is undefined or it is an error as decided by table 11.17.

use Returns shell true (0) if the first argument (a USE flag name) is enabled, false otherwise. If the
flag name is prefixed with !, returns true if the flag is disabled, and false if it is enabled. It is
guaranteed that this command is quiet.

usev The same as use, but also prints the flag name if the condition is met.
useq Deprecated synonym for use.

use_with Has one-, two-, and three-argument forms. The first argument is a USE flag name, the
second a configure option name (${opt}), defaulting to the same as the first argument if not
provided, and the third is a string value (${valuel}). For EAPIs listed in table 11.18 as not
supporting it, an empty third argument is treated as if it weren’t provided. If the USE flag is set,
outputs --with-${opt}=${value}l if the third argument was provided, and --with-${opt}
otherwise. If the flag is not set, then it outputs --without-${opt}.

use_enable Works the same as use_with(), but outputs --enable- or --disable- instead of
--with- or --without-.

usex Accepts at least one and at most five arguments. The first argument is a USE flag name,
any subsequent arguments (${arg2} to ${argbl}) are string values. If not provided,
${arg2} and ${arg3} default to yes and no, respectively; ${argd} and ${arg5} de-
fault to the empty string. If the USE flag is set, outputs ${arg2}${argd}. Otherwise, outputs
${arg3}${argb}. The condition is inverted if the flag name is prefixed with !. Only available
in EAPIs listed in table 11.19 as supporting usex.

11.3.3.12 Text List Functions

These functions check whitespace-separated lists for a particular value.

USE-WITH

CHAPTER 11. THE EBUILD ENVIRONMENT 68

Table 11.18: EAPIs supporting empty third argument in use_with and use_enable

EAPI Supports empty third argument?

No
No
No
No
Yes
Yes

O d WN - O

Table 11.19: EAPIs supporting usex

EAPI Supports usex?

O WN RO
Z
o

has Returns shell true (0) if the first argument (a word) is found in the list of subsequent arguments,
false otherwise. Guaranteed quiet.

hasv The same as has, but also prints the first argument if found.

hasq Deprecated synonym for has.

11.3.3.13 Misc Commands

The following commands are always available in the ebuild environment, but don’t really fit in any of
the above categories. Ebuilds must not run any of these commands once the current phase function
has returned.

dosed Takes any number of arguments, which can be files or sed expressions. For each argument,
if it names, relative to ED (offset-prefix aware EAPIs) or D (offset-prefix agnostic EAPIs) a file
which exists, then sed is run with the current expression on that file. Otherwise, the current
expression is set to the text of the argument. The initial value of the expression is s: ${ED}: : g
in offset-prefix aware EAPIs and s: ${D}: : g in offset-prefix agnostic EAPIs. In EAPIs listed
in table 11.8, this command is banned as per section 11.3.3.2.

unpack Unpacks one or more source archives, in order, into the current directory. After unpacking,
must ensure that all filesystem objects inside the current working directory (but not the current
working directory itself) have permissions a+r,u+w,go-w and that all directories under the
current working directory additionally have permissions a+x.

All arguments to unpack must be either a filename without path, in which case unpack looks
in DISTDIR for the file, or start with the string . /, in which case unpack uses the argument as
a path relative to the working directory.

Any unrecognised file format shall be skipped silently. If unpacking a supported file format
fails, unpack shall abort the build process.

Must be able to unpack the following file formats, if the relevant binaries are available:
e tar files (*.tar). Ebuilds must ensure that GNU tar installed.

e gzip-compressed tar files (*.tar.gz, *.tgz, *.tar.Z, *.tbz). Ebuilds must en-
sure that GNU gzip and GNU tar are installed.

UNPACK-EXTENSIONS

CHAPTER 11. THE EBUILD ENVIRONMENT 69

Table 11.20: unpack extensions for EAPIs

EAPI .xzand .tar.xz?

No
No
No
Yes
Yes
Yes

O d WwWN - O

Table 11.21: EAPIs supporting the default function

EAPI Supports default function?

No
No
Yes
Yes
Yes
Yes

ad WN - O

e bzip2-compressed tar files (*.tar.bz2, *.tbz2, *.tar.bz). Ebuilds must ensure
that bzip2 and GNU tar are installed.

o zipfiles (*.zip, *.ZIP, *.jar). Ebuilds mustensure that Info-ZIP Unzip is installed.
e gzip files (*.gz, *.Z, *.z). Ebuilds must ensure that GNU gzip is installed.

e bzip2 files (*.bz, *.bz2). Ebuilds must ensure that bzip?2 is installed.

e 7zip files (x.7z, *.7Z). Ebuilds must ensure that P7ZIP is installed.

e rar files (*.rar, *.RAR). Ebuilds must ensure that RARLAB’s unrar is installed.

e LHA archives (*.LHA, *.LHa, *.lha, *.lhz). Ebuilds mustensure that the lha pro-
gram is installed.

e ar archives (*.a). Ebuilds must ensure that GNU binutils is installed.

e deb packages (*.deb). Ebuilds must ensure that the deb2targz program is installed on
those platforms where the GNU binutils ar program is not available and the installed ar
program is incompatible with GNU archives. Otherwise, ebuilds must ensure that GNU
binutils is installed.

e lzma-compressed files (*.1zma). Ebuilds must ensure that LZMA Utils is installed.

e Izma-compressed tar files (*.tar.lzma). Ebuilds must ensure that LZMA Utils and
GNU tar are installed.

e xz-compressed files (*.xz). Ebuilds must ensure that XZ Utils is installed. Only for
EAPIs listed in table 11.20 as supporting xz.

e xz-compressed tar files (*.tar.xz). Ebuilds must ensure that XZ Utils and GNU tar are
installed. Only for EAPISs listed in table 11.20 as supporting xz.

It is up to the ebuild to ensure that the relevant external utilities are available, whether by being
in the system set or via dependencies.

inherit See section 10.1.

default Calls the default_ function for the current phase (see section 9.1.17). Must not be called if
the default_ function does not exist for the current phase in the current EAPI. Only available

in EAPIs listed in table 11.21.

CHAPTER 11. THE EBUILD ENVIRONMENT 70

11.3.3.14 Debug Commands

The following commands are available for debugging. Normally all of these commands should
be no ops; a package manager may provide a special debug mode where these commands instead
do something. Ebuilds must not run any of these commands once the current phase function has
returned.

debug-print If in a special debug mode, the arguments should be outputted or recorded using some
kind of debug logging.

debug-print-function Calls debug-print with $1: entering function as the first argument
and the remaining arguments as additional arguments.

debug-print-section Calls debug-print withnow in section $*.

11.3.3.15 Reserved Commands and Variables

Except where documented otherwise, all functions and variables that contain any of the following
strings (ignoring case) are reserved for package manager use and may not be used or relied upon by
ebuilds:

__ (two underscores) at beginning of string
abort

dyn

ebuild

hook

paludis

portage

prep

11.4 The state of the system between functions

For the sake of this section:

e Variancy is any package manager action that modifies either ROOT or / in any way that isn’t
merely a simple addition of something that doesn’t alter other packages. This includes any
non-default call to any pkg phase function except pkg_setup, a merge of any package or an
unmerge of any package.

e As an exception, changes to DISTDIR do not count as variancy.

e The pkg_setup function may be assumed not to introduce variancy. Thus, ebuilds must not
perform variant actions in this phase.

The following exclusivity and invariancy requirements are mandated:

e No variancy shall be introduced at any point between a package’s pkg_setup being started up
to the point that that package is merged, except for any variancy introduced by that package.

e There must be no variancy between a package’s pkg_setup and a package’s pkg_postinst,
except for any variancy introduced by that package.

e Any non-default pkg phase function must be run exclusively.

e Each phase function must be called at most once during the build process for any given pack-
age.

Chapter 12
Merging and Unmerging

Note: In this chapter, file and regular file have their Unix meanings.

12.1 Overview

The merge process merges the contents of the D directory onto the filesystem under ROOT. This is not
a straight copy; there are various subtleties which must be addressed.

The unmerge process removes an installed package’s files. It is not covered in detail in this specifi-
cation.

12.2 Directories

Directories are merged recursively onto the filesystem. The method used to perform the merge is not
specified, so long as the end result is correct. In particular, merging a directory may alter or remove
the source directory under D.

Ebuilds must not attempt to merge a directory on top of any existing file that is not either a directory
or a symlink to a directory.

12.2.1 Permissions

The owner, group and mode (including set*id and sticky bits) of the directory must be preserved,
except as follows:

e Any directory owned by the user used to perform the build must become owned by the root
user.

e Any directory whose group is the primary group of the user used to perform the build must
have its group be that of the root user.

On SELinux systems, the SELinux context must also be preserved. Other directory attributes, in-
cluding modification time, may be discarded.

12.2.2 Empty Directories

Behaviour upon encountering an empty directory is undefined. Ebuilds must not attempt to install an
empty directory.

71

CHAPTER 12. MERGING AND UNMERGING 72

Table 12.1: Preservation of file modification times (mtimes)

EAPI mtimes preserved?

Undefined
Undefined
Undefined
Yes
Yes
Yes

a s WN - O

12.3 Regular Files

Regular files are merged onto the filesystem (but see the notes on configuration file protection, be-
low). The method used to perform the merge is not specified, so long as the end result is correct. In
particular, merging a regular file may alter or remove the source file under D.

Ebuilds must not attempt to merge a regular file on top of any existing file that is not either a regular
file or a symlink to a regular file.

12.3.1 Permissions

The owner, group and mode (including set*id and sticky bits) of the file must be preserved, except
as follows:

o Any file owned by the user used to perform the build must become owned by the root user.

o Any file whose group is the primary group of the user used to perform the build must have its
group be that of the root user.

e The package manager may reduce read and write permissions on executable files that have a
set*id bit set.

On SELinux systems, the SELinux context must also be preserved. Other file attributes may be
discarded.

12.3.2 File modification times

In EAPIs listed in table 12.1, the package manager must preserve modification times of regular files.
This includes files being compressed before merging. Exceptions to this are files newly created by
the package manager and binary object files being stripped of symbols.

When preserving, the seconds part of every regular file’s mtime must be preserved exactly. The sub-
second part must either be set to zero, or set to the greatest value supported by the operating system
and filesystem that is not greater than the sub-second part of the original time.

For any given destination filesystem, the package manager must ensure that for any two preserved
files a, b in that filesystem the relation mtime(a) < mtime(d) still holds, if it held under the original
image directory.

In other EAPIS, the behaviour with respect to file modification times is undefined.

12.3.3 Configuration File Protection

The package manager must provide a means to prevent user configuration files from being overwrit-
ten by any package updates. The profile variables CONFIG_PROTECT and CONFIG_PROTECT_MASK
(section 5.3) control the paths for which this must be enforced.

In order to ensure interoperability with configuration update tools, the following scheme must be
used by all package managers when merging any regular file:

’ MTIME-PRESERVE

CHAPTER 12. MERGING AND UNMERGING 73

. If the directory containing the file to be merged is not listed in CONFIG_PROTECT, and is not a
subdirectory of any such directory, and if the file is not listed in CONFIG_PROTECT, the file is
merged normally.

. If the directory containing the file to be merged is listed in CONFIG_PROTECT_MASK, or is a
subdirectory of such a directory, or if the file is listed in CONFIG_PROTECT_MASK, the file is
merged normally.

. If no existing file with the intended filename exists, or the existing file has identical content to
the one being merged, the file is installed normally.

. Otherwise, prepend the filename with . _c£g0000_. If no file with the new name exists, then

the file is merged with this name.

5. Otherwise, increment the number portion (to form ._cfg0001_<name>) and repeat step 4.

Continue this process until a usable filename is found.
6. If 9999 is reached in this way, behaviour is undefined.

12.4 Symlinks

Symlinks are merged as symlinks onto the filesystem. The link destination for a merged link shall
be the same as the link destination for the link under D, except as noted below. The method used
to perform the merge is not specified, so long as the end result is correct; in particular, merging a

symlink may alter or remove the symlink under D.

Ebuilds must not attempt to merge a symlink on top of a directory.

12.4.1 Rewriting

Any absolute symlink whose link starts with D must be rewritten with the leading D removed. The

package manager should issue a notice when doing this.

12.5 Hard links

A hard link may be merged either as a single file with links or as multiple independent files.

12.6 Other Files

Ebuilds must not attempt to install any other type of file (FIFOs, device nodes etc).

Chapter 13

Metadata Cache

13.1 Directory Contents

The profiles/metadata/cache directory, if it exists, contains directories whose names are the
same as categories in the repository. Each subdirectory may optionally contain one file per package
version in that category, named <package>-<version>, in the format described below.

The metadata cache may be incomplete or non-existent, and may contain additional bogus entries.

13.2 Cache File Format

Each cache file contains the textual values of various metadata keys, one per line, in the following
order. Other lines may be present following these; their meanings are not defined here.

Build-time dependencies (DEPEND)
Run-time dependencies (RDEPEND)
Slot (SLOT)
Source tarball URIs (SRC_URI)
RESTRICT
Package homepage (HOMEPAGE)
Package license (LICENSE)
Package description (DESCRIPTION)
9. Package keywords (KEYWORDS)
10. Inherited eclasses (INHERITED)
11. Use flags that this package respects (IUSE)
12. Use flags that this package requires (REQUIRED_USE). Blank in some EAPIs; see table 7.2.
13. Post dependencies (PDEPEND)
14. Unused; previously used for old-style virtual PROVIDE.
15. The ebuild API version to which this package conforms (EAPI)
16. Properties (PROPERTIES). In some EAPIs, may optionally be blank, regardless of ebuild meta-
data; see table 7.2.
17. Defined phases (DEFINED_PHASES). In some EAPIs, may optionally be blank, regardless of
ebuild metadata; see table 7.4.
18. Blank lines to pad the file to 22 lines long

PNAN R WD =

Future EAPIs may define new variables, remove existing variables, change the line number or format
used for a particular variable, add or reduce the total length of the file and so on. Any future EAPI
that uses this cache format will continue to place the EAPI value on line 15 if such a concept makes
sense for that EAPI, and will place a value that is clearly not a supported EAPI on line 15 if it does
not.

74

Chapter 14

Glossary

This section contains explanations of some of the terms used in this document whose meaning may
not be immediately obvious.

qualified package name A package name along with its associated category. For example,
app-editors/vimis a qualified package name.

new-style virtual A new-style virtual is a normal package in the virtual category which installs
no files and uses its dependency requirements to pull in a ‘provider’. Historically, old-style
virtuals required special handling from the package manager; new-style virtuals do not.

stand-alone repository An (ebuild) repository which is intended to function on its own as the only,
or primary, repository on a system. Contrast with slave repository below.

slave repository, non-stand-alone repository An (ebuild) repository which is not complete enough
to function on its own, but needs one or more master repositories to satisfy dependencies and
provide repository-level support files. Known in Portage as an overlay.

master repository See above.

75

Appendix A

metadata.xml

The metadata.xml file is used to contain extra package- or category-level information beyond what
is stored in ebuild metadata. Its exact format is strictly beyond the scope of this document, and is
described in the DTD file located at http://www.gentoo.org/dtd/metadata.dtd.

76

http://www.gentoo.org/dtd/metadata.dtd

Appendix B

Unspecified Items

The following items are not specified by this document, and must not be relied upon by ebuilds. This
is, of course, an incomplete list—it covers only the things that the authors know have been abused in
the past.

The FEATURES variable. This is Portage specific.

Similarly, any EMERGE_ variable and any PORTAGE_ variable not explicitly listed.

Any Portage configuration file.

The VDB (/var/db/pkg). Ebuilds must not access this or rely upon it existing or being in

any particular format.

e The portageq command. The has_version and best_version commands are available as
functions.

e The emerge command.

e Binary packages.

e The PORTDIR_QOVERLAY variable, and overlay behaviour in general.

77

Appendix C

Historical Curiosities

The items described in this chapter are included for information only. They were deprecated or
abandoned long before EAPI was introduced. Ebuilds must not use these features, and package
managers should not be changed to support them.

C.1 If-else use blocks

Historically, Portage supported if-else use conditionals, as shown by listing C.1. The block before
the colon would be taken if the condition was met, and the block after the colon would be taken if
the condition was not met.

This feature was deprecated and removed from the tree long before the introduction of EAPT.

C.2 cvs Versions

Portage has very crude support for CVS packages. The package foo could contain a file named
foo-cvs.1.2.3.ebuild. This version would order higher than any non-CVS version (including
foo-2.ebuild). This feature has not seen real world use and breaks versioned dependencies, so it
must not be used.

C.3 use.defaults

The use.defaults file in the profile directory was used to implement ‘autouse’—switching USE
flags on or off depending upon which packages are installed. It was deprecated long ago and finally
removed in 2009.

Listing C.1: If-else use blocks

DEPEND="
flag? (
taken/if-true
) = (
taken/if-false
)

78

APPENDIX C. HISTORICAL CURIOSITIES 79

C.4 Old-style Virtuals

Historically, virtuals were special packages rather than regular ebuilds. An ebuild could specify in
the PROVIDE metadata that it supplied certain virtuals, and the package manager had to bear this in
mind when handling dependencies.

Old-style virtuals were supported by EAPIs 0, 1, 2, 3 and 4, and were phased out via GLEP 37 [2].

Appendix D

Feature Availability by EAPI

Note: This chapter is informative and for convenience only. Refer to the main text for specifics.

80

81

APPENDIX D. FEATURE AVAILABILITY BY EAPI

wpog qpog pa[[esuy pa[[elsuy pa[[eisuy pa[reIsug ¢pd ojur-3yd oyut~3xd
% % do-ou do-ou do-ou do-ou 1+d reIsur-o1s J[A1S TTe1SUT 218
SOx. ON ON ON ON ON 1+d s1se)-[orrered $159) [o[TeIRd
4 4 4 4 1 0 otd orrdwoo-o1s 9[A1s oTTdWOD D18
SOX SOX SOX SO ON ON 0pd 21n3yuoo-o1s 2IN8TJUOD~DIS
SOX SOX SOX SO ON ON 0pd aredaxd-o1s axedaad oas
SOX SO ON ON ON ON g¢d puajord-3yd puszoxd~8xd
[euonIpuo)) [euonIpuo)) sKemy sKemy sKemy skempy g¢d yorqrrej-rpyIom-s Yoeqqres YIaNHOM 01 S
3uong 3uons 3uons 3uong uappIqIo] uappIqio] ¢ed p3uans-3ueq SIO0[q j i
Yeam Yeom Yeom Yeopr peygmadsun pagroadsun ¢ed yySuans-3ueq SIOI0[q
QLIS J[AIS- J[AIS-T JIL18-7 ON ON y¢d sdop-asn sarouapuadap asn)
SR ON ON ON ON ON Ggdjors-qns sjo[s-qn§
101e19dQ
pue paweN pauwreN pauweN pauwreN paueN ON gg¢d sdap-107s sarouepuadap 101§
SOX SOX SOX SOX ON ON £¢d smoire-1mn-o1s smolre TYN~OYUS
SOA ON ON ON ON ON 7¢d Jo-auo-jsouwr-1e sdnoa3 () s
SO SO [revondo Aqrevondp Aqreuondg Ajreuondo 0¢d seseyd-pauyop SASYHd ™ QANIAAA
ON ON oK SOK SOX SO 6¢d puadep-puadops aNIdIa=aNIdIqH
SOx Sax AqreuondQ AreuondQ A[reuondQ Areuondo gzd sonxadoid SATINAJ0Ud
SOX SOX ON ON ON ON gzd asn-paxmboar ASN~aIYINDFY
SR SOX SOX SOX SOX. ON gzd synejop-asnt S)nejop ASNT
SOX ON ON ON ON ON zzd yseworgels 3uroioj/3upsew asn A[qelS
S 4 € (4 I 0
SIAVA UAIYY amedy

SIAVH Ul saInjea,] 7' 2[qeL

82

APPENDIX D. FEATURE AVAILABILITY BY EAPI

SOx ON ON ON ON ON 65d uondo-1001-1s0y q00x-9soy-- uondQ
pauueg pauueg SO SO SOX SOX g6d spuewioo-pauueq pasop
pouueg pouueg Sax S9x Sox) gGd spuewrmioo-pouueq paeyop

Sox Sax ON ON ON ON gGd 1ejejUOU TeleIUOU

Sox Sox ON ON ON ON g¢d ain[rej-uo-a1p QIp SaNI[IN ISOIN

SOX paugapup) paugepup) paugepuq) paugspup) paugepup) L6d puy-nu3 GNND ST PUTF

SOK SOK SO ON ON ON 66d srea-xyaid-jesyjo 100¥3 ‘qd ‘XI1494dH

SOA SOA ON ON ON ON §6d sreA-uorsIoA-aoefdar NOISYIA™ A9~ qIDVIdaY

SOA SOA ON ON ON ON §6d sieA-uorsIoA-aoefdar SNOISHIA DNIDVIdIY

Sox ON ON ON ON ON ¢gd 100(fur-asni-orgoxd uonodafur 4sn1 9[yoid

SO SO ON ON ON ON ¢6d od£)-o3r0wr AdALTIDYAN

SOk ON ON ON ON ON ggdoung-aseyd-prings ONNA~ASYHd ™ @1104d

ON ON SOX SO SOX SOX ecd Ay A

ON ON Sax Sox SOx) 61d ee Vv

18897018 18897018

‘TTe3sut ‘TTeasut
~oIs ~oIs 18997018 18917018
‘oTtdwoo ‘oTtdwoo ‘oTtdwoo ‘oTtdwoo
~oIs ~oIs ~oI1s ~oIs
‘0In3T FU0O ‘9an8TFuod ‘9an8TFuoo ‘9an8TFuUod
~oI1s ~oI1s ~oIs ~oIs
‘oxedaad ‘oxedaxd ‘oxedaxd ‘oxedaxd
~oIs ~oIs ~oIs “oIs
‘yoedun~oas ‘yoedun~oas ‘yoedun~oas ‘yoedunoIs
‘qoleJou ‘yozeyou ‘yo3eJou ‘yozeyou

~8xd ~8yd ~8yd ~8yd QUON QuoN d sounj-eseyd-jnejop suonounj aseyd ~aTneFsp
¢ 14 € [4 ! 0
SIdAVA AURIJY nmjed |

83

APPENDIX D. FEATURE AVAILABILITY BY EAPI

S9x SOx. SX paugspun paugapun pauygapun 7L d aarasard-ownyw paAlesald sowmu o[y
SOX SOX SOX SOX ON ON 69d oung-jnejop uorouny 3TNeFap
SO SO SO ON ON ON {9d suorsuajxa-yoedun (zx 10y 1oddns yoedun
SOX ON ON ON ON ON £9d xasn xosn
SR SR ON ON ON ON £9d yim-osn Sxe paryy A)dwo yatmTesn
SOX SO ON ON ON ON 99d ssaxdwooop ssoxdwooop
SOx. SOX ON ON ON ON 99d ssaxdwooop uorssaxdwod S[qe[[onu0))
SO ON ON ON ON ON +9d uIp1s-oojmau urpys Joddns xmeu
SOX SO ON ON V/N V/N ¢9d s3ue[-uewiop Q0UIPaOAId UGTT- URWOP
SOX SOX SOX SOx. ON ON ¢9d s3uel-uewop sogen3ue[wewop
S9X S9X ON ON ON ON ¢9d sutop SYUITWAS SO[pUeY SUTOP
SOx. ON ON ON ON ON 79d 1apeayop I9pesyop
SOX SOX ON ON ON ON 79d 2opop I- D0pop

so[nI

JUS[IS S[qeSIp

‘Sunyoen Sunyoen
Kouapuadop Kouapuadop
J[qesIp q[qesIp 09d suondo-juooa sjuowngIe Fuooe
Y %4 (4 ! 0
SIAVA UAIJY amedy

Appendix E

Differences Between EAPIs

Note: This chapter is informative and for convenience only. Refer to the main text for specifics.

EAPI 0

EAPI 0 is the base EAPI.

EAPI 1

EAPI 1 is EAPI O with the following changes:

e TUSE defaults, IUSE-DEFAULTS on page 28.
e Slot dependencies, SLOT-DEPS on page 35.
e Different src_compile implementation, SRC-COMPILE-1 on page 41.

EAPI 2

EAPI 2 is EAPI 1 with the following changes:

Use dependencies, USE-DEPS on page 34.

! and !! blockers, BANG-STRENGTH on page 35.

SRC_URI arrows, SRC-URI-ARROWS on page 37.

src_prepare, SRC-PREPARE on page 40.

src_configure, SRC-CONFIGURE on page 40.

Different src_compile implementation, SRC-COMPILE-2 on page 41.

default_ phase functions for phases pkg_nofetch, src_unpack, src_prepare, src_
configure, src_compile and src_test; DEFAULT-PHASE-FUNCS on page 44.

doman language detection by filename, DOMAN-LANGS on page 63.

e default function, DEFAULT-FUNC on page 69.

EAPI 3

EAPI 3 is EAPI 2 with the following changes:

o Offset-prefix support by definition of EPREFIX, ED and EROOT, OFFSET-PREFIX-VARS on
page 55.

e unpack supports .xz and .tar.xz, UNPACK-EXTENSIONS on page 68.

e File modification times are preserved, MTIME-PRESERVE on page 72.

84

APPENDIX E. DIFFERENCES BETWEEN EAPIS 85

EAPI 4

EAPI 4 is EAPI 3 with the following changes:

PROPERTIES support is mandatory, PROPERTIES on page 28.

REQUIRED_USE, REQUIRED-USE on page 28.

RDEPEND=DEPEND no longer done, RDEPEND-DEPEND on page 29.
DEFINED_PHASES support is mandatory, DEFINED-PHASES on page 30.

Use dependency defaults, USE-DEP-DEFAULTS on page 36.

S to WORKDIR fallback restricted, S-WORKDIR-FALLBACK on page 38.
pkg_pretend, PKG-PRETEND on page 38.

Default src_install no longer a no-op, SRC-INSTALL-4 on page 41.

pkg_info can run on non-installed packages, PKG-INFO on page 43.

AA is gone, AA on page 49.

KV is gone, KV on page 53.

MERGE_TYPE, MERGE-TYPE on page 53.

REPLACING_VERSIONS and REPLACED_BY_VERSION, REPLACE-VERSION-VARS on page 55.
Utilities now die on failure, DIE-ON-FAILURE on page 58, unless called under nonfatal,
NONFATAL on page 58

dohard, dosed banned, BANNED-COMMANDS on page 58.

econf adds --disable-dependency-tracking, ECONF-OPTIONS on page 60.
dodoc -r support, DODOC on page 62.

doins supports symlinks, DOINS on page 63.

doman -1i18n option takes precedence, DOMAN-LANGS on page 63.

Controllable compression and docompress, DOCOMPRESS on page 66.

use_with and use_enable support empty third argument, USE-WITH on page 67.

EAPI 5

EAPI 5 is EAPI 4 with the following changes:

Stable use masking and forcing, STABLEMASK on page 22.
REQUIRED_USE now supports 77 groups, AT-MOST-ONE-OF on page 32.
Slot operator dependencies, SLOT-OPERATOR-DEPS on page 35.

SLOT now supports an optional sub-slot part, SUB-SLOT on page 35.
src_test supports parallel tests, PARALLEL-TESTS on page 41.
EBUILD_PHASE_FUNC, EBUILD-PHASE-FUNC on page 52.

USE is calculated differently, PROFILE-IUSE-INJECT on page 55.

find is guaranteed to be GNU, GNU-FIND on page 57.

best_version and has_version support the --host-root option, HOST-ROOT-OPTION on
page 59.

econf adds --disable-silent-rules, ECONF-OPTIONS on page 60.
doheader and newheader support, DOHEADER on page 62.

new* can read from standard input, NEWFOO-STDIN on page 64.

usex support, USEX on page 67.

Bibliography

[1] Marius Mauch. GLEP 44: Manifest2 format. http://glep.gentoo.org/glep-0044.html,
December 2005.

[2] Jason Stubbs. GLEP 37: Virtuals deprecation. http://glep.gentoo.org/glep-0037.html,
April 2005.

86

http://glep.gentoo.org/glep-0044.html
http://glep.gentoo.org/glep-0037.html

/0°€/es-Aq/sesuadl|/B10°SUOWILIODBANEDIO//:dNY |
Jwx-swd/ebyus/foid/b10-00juab mmm//:dny .

‘Gg obed uo Sd3a-LOTS 883 "XelUuAs sweu | OTS
:007F/sqTT-A2p ayl Buisn Aq 10|s oi10ads ke 1senbal
Auoidxe ued ssiouspuadag salouapuadap 10|S paweN

‘gz 9bed uo s1INv43a-3sNI 893 Juosy ul ubis
+ & yum (uoneinbiyuod Jasn Ag Apoidxe pajgesip 1ou Ji)
Kiojepuew se payiew aq ued Beyy 35N v syneydp IASNI

sabueyy/suonippy

L 1dv3

‘pawinsse si 0 |dy3 ‘paioads Apioiidxe |dy3 ou s sy} |

01dv3

", 9dU8dI7 0°€ Il 8JeyS-uonnquily suow
-woD SAlBaID 8y} Jopun pases|al S| Juawndop syl

"MBIAJIBNO SIUY}

SB JN0X09YD SWes ay} WoJj }jINg ‘4asH Juswnadop SN dy}

0} 49421 s|aqe] ||y '|dY3 snoiraid sy} se awes ayi si |dy3

ue ‘pajou asimIsaylo aleym 1deox3 (" ‘g ‘I ‘0) siebal
-ul paJaquunu A[9AIINDASUOD dJE S|dYJ 00USY) [BIDIHO

‘Aluo Arewwns a}g|dwodul

ue sI siyl ‘ebed 108loid sy} uo puno} uoneoyoads Jebe

-uepy abexoed 8y} JNSU09 ‘s|ielap ||} 104 "sIoyine p|inga
J1o} ‘oouan) ul sebueyd |dy3J urew oy} JO MOIAIBAO Uy

108459y

2102 Jequisldes yioz
0°G UOISIBA

,Weal G\ d oojuan

198yS 1eayD IdVv4

"2z ebed uo MSYINITavLS 89S ‘plomAsy s|qels
B 0} anp pabisw aqg pinom jey] sabeyoed uo Auo joe
Ing ‘spedlslunod S Tqe1S-Uou J1dy} 0} Jejiwis ae Aay |
'sali0108.ip 8j1joid Ul pauoddns sie {0107 ‘Ysew}
‘oTgeas-osn-obeydoed pue {90107 ‘yseu}
‘oTge3s-osn sa|y moN Buldioybupjsew asn sjqeis

"2G obed uo ONN4-3SVHJ-ATING3 883 "UolOUN} P|INgS
JU81INd By} JO SWEU 8y} SUBUOD INg ‘HSVYHA dT1INdd
0} Jejwis AJon S| o|geleA syl ONNJ FASYHA aIIngd

"9 ebed U0 NIQLS-004M3N 885
‘(uaydAy B) — siuswnbie 1S4} 8yl JI Indul pJepueBlS Wod)
peaJ SPUBWIWOD 0@ SuTMau ay] indul piepuels xmau

‘29 ebed uo HIAQVIHOQ 89S "SUTOP 0} JE|l
-WIS ‘I2PE'aYOP 10} UOISINO8J Sd|qeus uondo I— ayj
‘spnTouT/asn/ ol (s)ay Jopeay usnib sy |eisul
suonouny Jadjay Mau 8say| ISPEIYMDU puk I9pesayop

-)9 ebed uo xasn 88g *(ou o} syneyep) [gosrey][1esie)]
sindino asimiaylo ‘(ssA o} synejep) [gendij[1ens] sind
-Ino ‘jes s| Beyy SN eyl il [zesiel] [zeni] [1esiey] [1eny]
<bey 3SN> xosn s| uonouny Jadjgy siyl Joj abesn xasn

‘66 abed uo NOILdO-LOOH-LSOH 89S
"1.00OY JO peajsul Joos 1soy ayl o} Aidde o3 Aienb ay)
sesneo Jey) uondo 300I1-3soy—— e uoddns siadjay
oM} 8| Sobueyd UOTSIDA 3SOC pUB UOTSIDA™ SeY

‘09 ebed uo SNOILJO-4NOD3
899G '9INHTJUOD 0} SOTNI-JUSTIS-STJRSTP——
sassed sAemje mou uonouny Juoos ay| sabueyd Fuoos

"L obed uo S1S3.1-1377vHVd 985 "Mou T L — Jnoyum
o)ewWsS SUNJ 3S937 OIS IO} }nejep oyl SIsa) |9jjeled

"z¢ obed
Uo 40-INO-LSOW-Lv 89S ‘Auew jo no Bej} JgN auo
lo 018z moje o} ,(" zbery 1beTI) <l

asn ued nok ISN” AEIIN0OHY ul sdnoib jo-auo-jsow-1y
'GG obed uo LOIrNI-ISNI-IT140Hd 995 'sajjoid Aq

papirold Ajpondwi 8q ued sbeyy jeuoiippe ‘2SN T ul palsy

Amoidxs sbejy 35N oyl wouy Jedy uonoalul IsnI 9jy0id

"G¢ obed U0 SdIA-HOLYHIJO-1LO1S 995

"(10|s-gns 10) 10|S
JuaJalIp e 0} pajepdn si Aouspuadap S} usym yeauq
ued abeyoed ay] Ing ‘e|qeidadde si anjea 10|s Auy =:

‘palepdn s Aouspuadap Sl uaym yealiq
10U |Im abeyoed ay] "8|qeidadde SI anjeA 10|s Auy *:

:se1ouspuadap awiuni jo sarepdn joaye
(M yoiym ‘swojle abexoed Jsye paioads ag ued sio}
-eJjado Bumojio} a8y} Jo suQ sal1ouapuadap Jojerado j0iS

‘G¢ obed uo 1071S-ans 993 '10|S Je|
-nBaJ 8y} 0} syNegep 1l ‘1.OIS Ul paljoads jou s 10|s-gqns
ay1] }Ingai aq 01 sabeyord juspuadep alinbai Aew j0is
-qns Jualayip & yum abexoed e Jo uoisian mau e o} ape.b
-dn ue yoiym ui saseo jJuasaidal 0} pasn si 10|s-qns ay |
"0€ /7 9/dwexs o} Luojoeleyd / e AQ pauwiep ‘10|s
Jenbal ay) smojjo} eyl Lied 10js-gns Jeuondo ue urejuod
ARew salouspuadap 10|s pue d|qelea TOTS 8yl Sslo|s-qns

sabueyy/suonippy

(02-60-2102) S IdV3

‘66 abed uo AM pue g abed uo
vV 998 ‘aJow Aue pauljop 10U aJe So|geleA 8say | AM ‘WY

'8¢ abed uo MOVET1IV4-HIANHOM-S 888
‘uondaoxa Ajuo ayj ale sabexoed [enuiA "Loge Ing ‘Alo}
-09JIp B 10U SI S I I AMMOM 0} pabueyd aq Ajjednewo}
-Ne JoU ||IM S d|qelIBA 8U) JO anjeA 8y sabueyd yoeqjie} s

‘6z ebed uo aN3I43A-ANIJIAYH 988
‘pauepun sI ANAJdAAT J ANIdAA=ANIJAA O} ¥oeq
[Ie} 1ou |im JabBeuew abexoed ay] yoeq-jje} ANZJATAE ON

"8G obed U0 SANVIWINOO-AINNYE 89S
"2J0W AuB pamoj|e 10U 8Je suoljouUN} Ylog POSsop ‘PpIeyop

sueg/s|eAoway

"GG abed uo SHVYA-NOISHIA-IOV1d3Y 983 *AjaAljoadsal

‘@uo jaund a8yl bBuioe|das sI 1Byl UOISIOA Byl pue

‘Buioejdas aie am Jey) abexoed siyl jo (JAJ) suoision

[[e JO 1SI| & ureluod ‘¥~ H3d ul pifea ‘se|gelieA asay]|
NOISYIA X9 QIDVIATY ‘SNOISYHA ONIOVIdHT

"G abed U0 IdAL-IDHIN 888 “(ATUOPTTNA)
uone|elsul inoyim uone|idwod e o {(Axeutd) abeyoed
AJeuiq e Jo uone|eisul {(20In0sS) uoie|eisul pue uolne|
-ldwod yum abisw [ewiou SI U JI SHO9UD MO|je 0} SanjeA
9|qissod 9a.y} J0 SUO SUIBIUOD d|0BLBA SIU] FJXL ADIHANW

EAPI 2 (2008-09-25)

Additions/Changes

SRC_URI arrows Allows redirection of upstream file nam-
ing scheme. By using SRC_URI="http://some/
url —-> foo" the file is saved as foo in DISTDIR.
See SRC-URI-ARROWS on page 37.

USE dependencies Dependencies can specify USE flag
requirements on their target, removing the need for
built_with_use checks.

[opt] The flag must be enabled.

[opt=] The flag must be enabled if it is enabled for the
package with the dependency, or disabled other-
wise.

[lopt=] The flag must be disabled if it is enabled for the
package with the dependency, or enabled otherwise.

[opt?] The flag must be enabled if it is enabled for the
package with the dependency.

[lopt?] The flag must be disabled if it is disabled for the
package with the dependency.

[-opt] The flag must be disabled.
See USE-DEPS on page 34.

Blocker syntax A single exclamation mark as a blocker
may be ignored by the package manager as long as the
stated package is uninstalled later on. Two exclamation
marks are a strong blocker and will always be respected.
See BANG-STRENGTH on page 35.

src_configure, src_prepare Both new phases
provide finer granularity in the ebuild’s structure. Con-
figure calls should be moved from src_compile
to src_configure. Patching and similar prepa-
ration must now be done in src_prepare, not
src_unpack. See SRC-PREPARE on page 40 and
SRC-CONFIGURE on page 40.

Default phase functions The default functions for phases
pkg_nofetch, src_unpack, src_prepare,
src_configure, src_compile and src_test
can be called via default_phasename, so duplicat-
ing the standard implementation is no longer necessary
for small additions. The short-hand default function

calls the current phase’s default_ function auto-
matically, so any small additions you need will not be
accompanied by a complete reimplementation of the
phase. See DEFAULT-PHASE-FUNCS on page 44 and
DEFAULT-FUNC on page 69.

doman language support The doman installation func-
tion recognizes language specific man page extensions
and behaves accordingly. This behaviour can be inhib-
ited by the —118n switch with EAPI 4. See DOMAN-
LANGS on page 63.

EAPI 3 (2010-01-18)

Additions/Changes

Support for .xz Unpack of .xz and .tar.xz files is
possible without any custom src_unpack functions.
See UNPACK-EXTENSIONS on page 68.

Offset prefix Supporting installation on Prefix-enabled
systems will be easier with this EAPI.

EAPI 4 (2011-01-17)

Additions/Changes

pkg_pretend Some useful checks (kernel options for
example) can be placed in this new phase to inform
the user early (when just pretending to emerge the
package). Most checks should usually be repeated in
pkg_setup. See PKG-PRETEND on page 38.

src_install The src_install phase is no longer
empty but has a default now. This comes along with an
accompanying default function. See SRC-INSTALL-4
on page 41.

pkg_info on non-installed packages The pkg_info
phase can be called even for non-installed packages.
Be warned that dependencies might not have been in-
stalled at execution time. See PKG-INFO on page 43.

econf changes The helper function now always acti-
vates ——disable-dependency-tracking. See
ECONF-OPTIONS on page 60.

USE dependency defaults In addition to the features of-
fered in EAPI 2 for USE dependencies, a (+) or (—)
can be added after a USE flag (mind the parentheses).
The former specifies that flags not in IUSE should be
treated as enabled; the latter, disabled. Cannot be used
with USE_EXPAND flags. This mimics parts of the be-
haviour of ——missing in built_with_use. See
USE-DEP-DEFAULTS on page 36.

Controllable compression All items in the doc, info,
man subdirectories of /usr/share/ may be com-
pressed on-disk after src_install, except for
/usr/share/doc/${PF}/html. docompress
path ... adds paths to the inclusion list for com-
pression. docompress —-x path ... adds paths
to the exclusion list. See DOCOMPRESS on page 66.

dodoc recursion If the —r switch is given as first argu-
ment and followed by directories, files from there are in-
stalled recursively. See DODOC on page 62.

doins symlink support Symbolic links are now properly
installed when using recursion (—r switch). See DOINS
on page 63.

nonfatal for commands If you call nonfatal the
command given as argument will not abort the build pro-
cess in case of a failure (as is the default) but will return
non-zero on failure. See NONFATAL on page 58.

PROPERTIES Is mandatory for all package managers now
to support interactive installs.

REQUIRED_USE This variable can be used similar to the
(R|P)DEPEND variables and define sets of USE flag
combinations that are not allowed. All elements can be
further nested to achieve more functionality.

Forbidden combination To prevent activation of
flagl if £lag2 is enabled use "flag2? (
'flagl)"

OR If at least one USE flag out of many must
be activated on flagl use "flagl? (|| (
flag2 flag3 ...))"

XOR To allow exactly one USE flag out of many use
"~~(flagl flag2 ...)"

See REQUIRED-USE on page 28.

	Introduction
	Aims and Motivation
	Rationale
	Conventions

	EAPIs
	Definition
	Defined EAPIs
	Reserved EAPIs

	Names and Versions
	Restrictions upon Names
	Category Names
	Package Names
	Slot Names
	USE Flag Names
	Repository Names
	Keyword Names
	EAPI Names

	Version Specifications
	Version Comparison
	Uniqueness of versions

	Tree Layout
	Top Level
	Category Directories
	Package Directories
	The Profiles Directory
	The profiles.desc file
	The thirdpartymirrors file
	use.desc and related files
	The updates directory

	The Licenses Directory
	The Eclass Directory
	The Metadata Directory
	The metadata cache

	Profiles
	General principles
	Files that make up a profile
	The parent file
	The eapi file
	deprecated
	make.defaults
	Simple line-based files
	packages
	packages.build
	package.mask
	package.provided
	package.use
	USE masking and forcing

	Profile variables
	Incremental Variables
	Specific variables and their meanings

	Ebuild File Format
	Ebuild-defined Variables
	Metadata invariance
	Mandatory Ebuild-defined Variables
	Optional Ebuild-defined Variables
	EAPI
	Keywords
	RDEPEND value

	Magic Ebuild-defined Variables

	Dependencies
	Dependency Classes
	Dependency Specification Format
	All-of Dependency Specifications
	Use-conditional Dependency Specifications
	Any-of Dependency Specifications
	Exactly-one-of Dependency Specifications
	At-most-one-of Dependency Specifications
	Package Dependency Specifications
	Use State Constraints
	Restrict
	Properties
	SRC_URI

	Ebuild-defined Functions
	List of Functions
	Initial Working Directories
	pkg_pretend
	pkg_setup
	src_unpack
	src_prepare
	src_configure
	src_compile
	src_test
	src_install
	pkg_preinst
	pkg_postinst
	pkg_prerm
	pkg_postrm
	pkg_config
	pkg_info
	pkg_nofetch
	default_ Phase Functions

	Call Order

	Eclasses
	The inherit command
	Eclass-defined Metadata Keys
	EXPORT_FUNCTIONS

	The Ebuild Environment
	Defined Variables
	USE and IUSE Handling
	REPLACING_VERSIONS and REPLACED_BY_VERSION
	Offset-prefix variables EPREFIX, EROOT and ED

	The state of variables between functions
	Available commands
	System commands
	Commands provided by package dependencies
	Ebuild-specific Commands

	The state of the system between functions

	Merging and Unmerging
	Overview
	Directories
	Permissions
	Empty Directories

	Regular Files
	Permissions
	File modification times
	Configuration File Protection

	Symlinks
	Rewriting

	Hard links
	Other Files

	Metadata Cache
	Directory Contents
	Cache File Format

	Glossary
	metadata.xml
	Unspecified Items
	Historical Curiosities
	If-else use blocks
	cvs Versions
	use.defaults
	Old-style Virtuals

	Feature Availability by EAPI
	Differences Between EAPIs
	Desk Reference

